1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
use crate::general::{
ClosedDiv, ClosedMul, ClosedNeg, ComplexField, Id, MultiplicativeGroup, MultiplicativeMonoid,
RealField, SubsetOf, TwoSidedInverse,
};
use crate::linear::{EuclideanSpace, NormedSpace};
// NOTE: A subgroup trait inherit from its parent groups.
/// A general transformation acting on an euclidean space. It may not be inversible.
pub trait Transformation<E: EuclideanSpace>: MultiplicativeMonoid {
/// Applies this group's action on a point from the euclidean space.
fn transform_point(&self, pt: &E) -> E;
/// Applies this group's action on a vector from the euclidean space.
///
/// If `v` is a vector and `a, b` two point such that `v = a - b`, the action `∘` on a vector
/// is defined as `self ∘ v = (self × a) - (self × b)`.
fn transform_vector(&self, v: &E::Coordinates) -> E::Coordinates;
}
/// The most general form of invertible transformations on an euclidean space.
pub trait ProjectiveTransformation<E: EuclideanSpace>:
MultiplicativeGroup + Transformation<E>
{
/// Applies this group's two_sided_inverse action on a point from the euclidean space.
fn inverse_transform_point(&self, pt: &E) -> E;
/// Applies this group's two_sided_inverse action on a vector from the euclidean space.
///
/// If `v` is a vector and `a, b` two point such that `v = a - b`, the action `∘` on a vector
/// is defined as `self ∘ v = (self × a) - (self × b)`.
fn inverse_transform_vector(&self, v: &E::Coordinates) -> E::Coordinates;
}
/// The group of affine transformations. They are decomposable into a rotation, a non-uniform
/// scaling, a second rotation, and a translation (applied in that order).
pub trait AffineTransformation<E: EuclideanSpace>: ProjectiveTransformation<E> {
/// Type of the first rotation to be applied.
type Rotation: Rotation<E>;
/// Type of the non-uniform scaling to be applied.
type NonUniformScaling: AffineTransformation<E>;
/// The type of the pure translation part of this affine transformation.
type Translation: Translation<E>;
/// Decomposes this affine transformation into a rotation followed by a non-uniform scaling,
/// followed by a rotation, followed by a translation.
fn decompose(
&self,
) -> (
Self::Translation,
Self::Rotation,
Self::NonUniformScaling,
Self::Rotation,
);
// FIXME: add a `recompose` method?
/*
* Composition with components.
*/
/// Appends a translation to this similarity.
fn append_translation(&self, t: &Self::Translation) -> Self;
/// Prepends a translation to this similarity.
fn prepend_translation(&self, t: &Self::Translation) -> Self;
/// Appends a rotation to this similarity.
fn append_rotation(&self, r: &Self::Rotation) -> Self;
/// Prepends a rotation to this similarity.
fn prepend_rotation(&self, r: &Self::Rotation) -> Self;
/// Appends a scaling factor to this similarity.
fn append_scaling(&self, s: &Self::NonUniformScaling) -> Self;
/// Prepends a scaling factor to this similarity.
fn prepend_scaling(&self, s: &Self::NonUniformScaling) -> Self;
/// Appends to this similarity a rotation centered at the point `p`, i.e., this point is left
/// invariant.
///
/// May return `None` if `Self` does not have enough translational degree of liberty to perform
/// this computation.
#[inline]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self> {
if let Some(t) = Self::Translation::from_vector(p.coordinates()) {
let it = t.two_sided_inverse();
Some(
self.append_translation(&it)
.append_rotation(&r)
.append_translation(&t),
)
} else {
None
}
}
}
/// Subgroups of the similarity group `S(n)`, i.e., rotations, translations, and (signed) uniform scaling.
///
/// Similarities map lines to lines and preserve angles.
pub trait Similarity<E: EuclideanSpace>:
AffineTransformation<E, NonUniformScaling = <Self as Similarity<E>>::Scaling>
{
/// The type of the pure (uniform) scaling part of this similarity transformation.
type Scaling: Scaling<E>;
/*
* Components retrieval.
*/
/// The pure translational component of this similarity transformation.
fn translation(&self) -> Self::Translation;
/// The pure rotational component of this similarity transformation.
fn rotation(&self) -> Self::Rotation;
/// The pure scaling component of this similarity transformation.
fn scaling(&self) -> Self::Scaling;
/*
* Transformations.
*/
/// Applies this transformation's pure translational part to a point.
#[inline]
fn translate_point(&self, pt: &E) -> E {
self.translation().transform_point(pt)
}
/// Applies this transformation's pure rotational part to a point.
#[inline]
fn rotate_point(&self, pt: &E) -> E {
self.rotation().transform_point(pt)
}
/// Applies this transformation's pure scaling part to a point.
#[inline]
fn scale_point(&self, pt: &E) -> E {
self.scaling().transform_point(pt)
}
/// Applies this transformation's pure rotational part to a vector.
#[inline]
fn rotate_vector(&self, pt: &E::Coordinates) -> E::Coordinates {
self.rotation().transform_vector(pt)
}
/// Applies this transformation's pure scaling part to a vector.
#[inline]
fn scale_vector(&self, pt: &E::Coordinates) -> E::Coordinates {
self.scaling().transform_vector(pt)
}
/*
* Inverse transformations.
*/
/// Applies this transformation inverse's pure translational part to a point.
#[inline]
fn inverse_translate_point(&self, pt: &E) -> E {
self.translation().inverse_transform_point(pt)
}
/// Applies this transformation inverse's pure rotational part to a point.
#[inline]
fn inverse_rotate_point(&self, pt: &E) -> E {
self.rotation().inverse_transform_point(pt)
}
/// Applies this transformation inverse's pure scaling part to a point.
#[inline]
fn inverse_scale_point(&self, pt: &E) -> E {
self.scaling().inverse_transform_point(pt)
}
/// Applies this transformation inverse's pure rotational part to a vector.
#[inline]
fn inverse_rotate_vector(&self, pt: &E::Coordinates) -> E::Coordinates {
self.rotation().inverse_transform_vector(pt)
}
/// Applies this transformation inverse's pure scaling part to a vector.
#[inline]
fn inverse_scale_vector(&self, pt: &E::Coordinates) -> E::Coordinates {
self.scaling().inverse_transform_vector(pt)
}
}
/// Subgroups of the isometry group `E(n)`, i.e., rotations, reflexions, and translations.
pub trait Isometry<E: EuclideanSpace>: Similarity<E, Scaling = Id> {}
/// Subgroups of the orientation-preserving isometry group `SE(n)`, i.e., rotations and translations.
pub trait DirectIsometry<E: EuclideanSpace>: Isometry<E> {}
/// Subgroups of the n-dimensional rotations and scaling `O(n)`.
pub trait OrthogonalTransformation<E: EuclideanSpace>: Isometry<E, Translation = Id> {}
/// Subgroups of the (signed) uniform scaling group.
pub trait Scaling<E: EuclideanSpace>:
AffineTransformation<E, NonUniformScaling = Self, Translation = Id, Rotation = Id>
+ SubsetOf<E::RealField>
{
/// Converts this scaling factor to a real. Same as `self.to_superset()`.
#[inline]
fn to_real(&self) -> E::RealField {
self.to_superset()
}
/// Attempts to convert a real to an element of this scaling subgroup. Same as
/// `Self::from_superset()`. Returns `None` if no such scaling is possible for this subgroup.
#[inline]
fn from_real(r: E::RealField) -> Option<Self> {
Self::from_superset(&r)
}
/// Raises the scaling to a power. The result must be equivalent to
/// `self.to_superset().powf(n)`. Returns `None` if the result is not representable by `Self`.
#[inline]
fn powf(&self, n: E::RealField) -> Option<Self> {
Self::from_superset(&self.to_superset().powf(n))
}
/// The scaling required to make `a` have the same norm as `b`, i.e., `|b| = |a| * norm_ratio(a,
/// b)`.
#[inline]
fn scale_between(a: &E::Coordinates, b: &E::Coordinates) -> Option<Self> {
Self::from_superset(&(b.norm() / a.norm()))
}
}
/// Subgroups of the n-dimensional translation group `T(n)`.
pub trait Translation<E: EuclideanSpace>:
DirectIsometry<E, Translation = Self, Rotation = Id> /* + SubsetOf<E::Coordinates> */
{
// NOTE: we must define those two conversions here (instead of just using SubsetOf) because the
// structure of Self uses the multiplication for composition, while E::Coordinates uses addition.
// Having a trait that says "remap this operator to this other one" does not seem to be
// possible without higher kinded traits.
/// Converts this translation to a vector.
fn to_vector(&self) -> E::Coordinates;
/// Attempts to convert a vector to this translation. Returns `None` if the translation
/// represented by `v` is not part of the translation subgroup represented by `Self`.
fn from_vector(v: E::Coordinates) -> Option<Self>;
/// Raises the translation to a power. The result must be equivalent to
/// `self.to_superset() * n`. Returns `None` if the result is not representable by `Self`.
#[inline]
fn powf(&self, n: E::RealField) -> Option<Self> {
Self::from_vector(self.to_vector() * n)
}
/// The translation needed to make `a` coincide with `b`, i.e., `b = a * translation_to(a, b)`.
#[inline]
fn translation_between(a: &E, b: &E) -> Option<Self> {
Self::from_vector(b.clone() - a.clone())
}
}
/// Subgroups of the n-dimensional rotation group `SO(n)`.
pub trait Rotation<E: EuclideanSpace>:
OrthogonalTransformation<E, Rotation = Self> + DirectIsometry<E, Rotation = Self>
{
/// Raises this rotation to a power. If this is a simple rotation, the result must be
/// equivalent to multiplying the rotation angle by `n`.
fn powf(&self, n: E::RealField) -> Option<Self>;
/// Computes a simple rotation that makes the angle between `a` and `b` equal to zero, i.e.,
/// `b.angle(a * delta_rotation(a, b)) = 0`. If `a` and `b` are collinear, the computed
/// rotation may not be unique. Returns `None` if no such simple rotation exists in the
/// subgroup represented by `Self`.
fn rotation_between(a: &E::Coordinates, b: &E::Coordinates) -> Option<Self>;
/// Computes the rotation between `a` and `b` and raises it to the power `n`.
///
/// This is equivalent to calling `self.rotation_between(a, b)` followed by `.powf(n)` but will
/// usually be much more efficient.
#[inline]
fn scaled_rotation_between(
a: &E::Coordinates,
b: &E::Coordinates,
s: E::RealField,
) -> Option<Self>;
// FIXME: add a function that computes the rotation with the axis orthogonal to Span(a, b) and
// with angle equal to `n`?
}
/*
*
* Implementation for floats.
*
*/
impl<R, E> Transformation<E> for R
where
R: RealField,
E: EuclideanSpace<RealField = R>,
E::Coordinates: ClosedMul<R> + ClosedDiv<R> + ClosedNeg,
{
#[inline]
fn transform_point(&self, pt: &E) -> E {
pt.scale_by(*self)
}
#[inline]
fn transform_vector(&self, v: &E::Coordinates) -> E::Coordinates {
v.clone() * *self
}
}
impl<R, E> ProjectiveTransformation<E> for R
where
R: RealField,
E: EuclideanSpace<RealField = R>,
E::Coordinates: ClosedMul<R> + ClosedDiv<R> + ClosedNeg,
{
#[inline]
fn inverse_transform_point(&self, pt: &E) -> E {
assert!(*self != R::zero());
pt.scale_by(R::one() / *self)
}
#[inline]
fn inverse_transform_vector(&self, v: &E::Coordinates) -> E::Coordinates {
assert!(*self != R::zero());
v.clone() * (R::one() / *self)
}
}
impl<R, E> AffineTransformation<E> for R
where
R: RealField,
E: EuclideanSpace<RealField = R>,
E::Coordinates: ClosedMul<R> + ClosedDiv<R> + ClosedNeg,
{
type Rotation = Id;
type NonUniformScaling = R;
type Translation = Id;
#[inline]
fn decompose(&self) -> (Id, Id, R, Id) {
(Id::new(), Id::new(), *self, Id::new())
}
#[inline]
fn append_translation(&self, _: &Self::Translation) -> Self {
*self
}
#[inline]
fn prepend_translation(&self, _: &Self::Translation) -> Self {
*self
}
#[inline]
fn append_rotation(&self, _: &Self::Rotation) -> Self {
*self
}
#[inline]
fn prepend_rotation(&self, _: &Self::Rotation) -> Self {
*self
}
#[inline]
fn append_scaling(&self, s: &Self::NonUniformScaling) -> Self {
*s * *self
}
#[inline]
fn prepend_scaling(&self, s: &Self::NonUniformScaling) -> Self {
*self * *s
}
}
impl<R, E> Scaling<E> for R
where
R: RealField + SubsetOf<R>,
E: EuclideanSpace<RealField = R>,
E::Coordinates: ClosedMul<R> + ClosedDiv<R> + ClosedNeg,
{
#[inline]
fn to_real(&self) -> E::RealField {
*self
}
#[inline]
fn from_real(r: E::RealField) -> Option<Self> {
Some(r)
}
#[inline]
fn powf(&self, n: E::RealField) -> Option<Self> {
Some(n.powf(n))
}
#[inline]
fn scale_between(a: &E::Coordinates, b: &E::Coordinates) -> Option<Self> {
Some(b.norm() / a.norm())
}
}
impl<R, E> Similarity<E> for R
where
R: RealField + SubsetOf<R>,
E: EuclideanSpace<RealField = R>,
E::Coordinates: ClosedMul<R> + ClosedDiv<R> + ClosedNeg,
{
type Scaling = R;
fn translation(&self) -> Self::Translation {
Id::new()
}
fn rotation(&self) -> Self::Rotation {
Id::new()
}
fn scaling(&self) -> Self::Scaling {
*self
}
}