1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
use num;
use num_complex::Complex;
use std::ops::{
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
};
use crate::general::{ClosedAdd, ClosedDiv, ClosedMul, ComplexField, Field, Module, RealField};
/// A vector space has a module structure over a field instead of a ring.
pub trait VectorSpace: Module<Ring = <Self as VectorSpace>::Field>
/* +
ClosedDiv<<Self as VectorSpace>::Field> */
{
/// The underlying scalar field.
type Field: Field;
}
/// A normed vector space.
pub trait NormedSpace: VectorSpace<Field = <Self as NormedSpace>::ComplexField> {
/// The result of the norm (not necessarily the same same as the field used by this vector space).
type RealField: RealField;
/// The field of this space must be this complex number.
type ComplexField: ComplexField<RealField = Self::RealField>;
/// The squared norm of this vector.
fn norm_squared(&self) -> Self::RealField;
/// The norm of this vector.
fn norm(&self) -> Self::RealField;
/// Returns a normalized version of this vector.
fn normalize(&self) -> Self;
/// Normalizes this vector in-place and returns its norm.
fn normalize_mut(&mut self) -> Self::RealField;
/// Returns a normalized version of this vector unless its norm as smaller or equal to `eps`.
fn try_normalize(&self, eps: Self::RealField) -> Option<Self>;
/// Normalizes this vector in-place or does nothing if its norm is smaller or equal to `eps`.
///
/// If the normalization succeeded, returns the old normal of this vector.
fn try_normalize_mut(&mut self, eps: Self::RealField) -> Option<Self::RealField>;
}
/// A vector space equipped with an inner product.
///
/// It must be a normed space as well and the norm must agree with the inner product.
/// The inner product must be symmetric, linear in its first argument, and positive definite.
pub trait InnerSpace: NormedSpace {
/// Computes the inner product of `self` with `other`.
fn inner_product(&self, other: &Self) -> Self::ComplexField;
/// Measures the angle between two vectors.
#[inline]
fn angle(&self, other: &Self) -> Self::RealField {
let prod = self.inner_product(other);
let n1 = self.norm();
let n2 = other.norm();
if n1 == num::zero() || n2 == num::zero() {
num::zero()
} else {
let cang = prod.real() * n1 * n2;
if cang > num::one() {
num::zero()
} else if cang < -num::one::<Self::RealField>() {
Self::RealField::pi()
} else {
cang.acos()
}
}
}
}
/// A finite-dimensional vector space.
pub trait FiniteDimVectorSpace:
VectorSpace
+ Index<usize, Output = <Self as VectorSpace>::Field>
+ IndexMut<usize, Output = <Self as VectorSpace>::Field>
{
/// The vector space dimension.
fn dimension() -> usize;
/// Applies the given closule to each element of this vector space's canonical basis. Stops if
/// `f` returns `false`.
// XXX: return an iterator instead when `-> impl Iterator` will be supported by Rust.
fn canonical_basis<F: FnMut(&Self) -> bool>(mut f: F) {
for i in 0..Self::dimension() {
if !f(&Self::canonical_basis_element(i)) {
break;
}
}
}
/// The i-the canonical basis element.
fn canonical_basis_element(i: usize) -> Self;
/// The dot product between two vectors.
fn dot(&self, other: &Self) -> Self::Field;
/// Same as `&self[i]` but without bound-checking.
unsafe fn component_unchecked(&self, i: usize) -> &Self::Field;
/// Same as `&mut self[i]` but without bound-checking.
unsafe fn component_unchecked_mut(&mut self, i: usize) -> &mut Self::Field;
}
/// A finite-dimensional vector space equipped with an inner product that must coincide
/// with the dot product.
pub trait FiniteDimInnerSpace:
InnerSpace + FiniteDimVectorSpace<Field = <Self as NormedSpace>::ComplexField>
{
/// Orthonormalizes the given family of vectors. The largest free family of vectors is moved at
/// the beginning of the array and its size is returned. Vectors at an indices larger or equal to
/// this length can be modified to an arbitrary value.
fn orthonormalize(vs: &mut [Self]) -> usize;
/// Applies the given closure to each element of the orthonormal basis of the subspace
/// orthogonal to free family of vectors `vs`. If `vs` is not a free family, the result is
/// unspecified.
// XXX: return an iterator instead when `-> impl Iterator` will be supported by Rust.
fn orthonormal_subspace_basis<F: FnMut(&Self) -> bool>(vs: &[Self], f: F);
}
/// A set points associated with a vector space and a transitive and free additive group action
/// (the translation).
pub trait AffineSpace:
Sized
+ Clone
+ PartialEq
+ Sub<Self, Output = <Self as AffineSpace>::Translation>
+ ClosedAdd<<Self as AffineSpace>::Translation>
{
/// The associated vector space.
type Translation: VectorSpace;
/// Same as `*self + *t`. Applies the additive group action of this affine space's associated
/// vector space on `self`.
#[inline]
fn translate_by(&self, t: &Self::Translation) -> Self {
self.clone() + t.clone()
}
/// Same as `*self - *other`. Returns the unique element `v` of the associated vector space
/// such that `self = right + v`.
#[inline]
fn subtract(&self, right: &Self) -> Self::Translation {
self.clone() - right.clone()
}
}
/// The finite-dimensional affine space based on the field of reals.
pub trait EuclideanSpace: AffineSpace<Translation = <Self as EuclideanSpace>::Coordinates> +
// Equivalent to `.scale_by`.
ClosedMul<<Self as EuclideanSpace>::RealField> +
// Equivalent to `.scale_by`.
ClosedDiv<<Self as EuclideanSpace>::RealField> +
// Equivalent to `.scale_by(-1.0)`.
Neg<Output = Self> {
/// The underlying finite vector space.
type Coordinates: FiniteDimInnerSpace<RealField = Self::RealField, ComplexField = Self::RealField> +
// XXX: the following bounds should not be necessary but the compiler does not
// seem to be able to find them (from supertraits of VectorSpace)… Also, it won't
// find them even if we add ClosedMul instead of Mul and MulAssign separately…
Add<Self::Coordinates, Output = Self::Coordinates> +
AddAssign<Self::Coordinates> +
Sub<Self::Coordinates, Output = Self::Coordinates> +
SubAssign<Self::Coordinates> +
Mul<Self::RealField, Output = Self::Coordinates> +
MulAssign<Self::RealField> +
Div<Self::RealField, Output = Self::Coordinates> +
DivAssign<Self::RealField> +
Neg<Output = Self::Coordinates>;
// XXX: we can't write the following =( :
// type Vector: FiniteDimInnerSpace<Field = Self::RealField> + InnerSpace<RealField = Self::RealField>;
// The compiler won't recognize that VectorSpace::Field = Self::RealField.
// Though it will work if only one bound is used… looks like a compiler bug.
/// The underlying reals.
type RealField: RealField;
/// The preferred origin of this euclidean space.
///
/// Theoretically, an euclidean space has no clearly defined origin. Though it is almost always
/// useful to have some reference point to express all the others as translations of it.
fn origin() -> Self;
/// Multiplies the distance of this point to `Self::origin()` by `s`.
///
/// Same as self * s.
#[inline]
fn scale_by(&self, s: Self::RealField) -> Self {
Self::from_coordinates(self.coordinates() * s)
}
// FIXME: take self by-value?
/// The coordinates of this point, i.e., the translation from the origin.
#[inline]
fn coordinates(&self) -> Self::Coordinates {
self.subtract(&Self::origin())
}
/// Builds a point from its coordinates relative to the origin.
#[inline]
fn from_coordinates(coords: Self::Coordinates) -> Self {
Self::origin().translate_by(&coords)
}
/// The distance between two points.
#[inline]
fn distance_squared(&self, b: &Self) -> Self::RealField {
self.subtract(b).norm_squared()
}
/// The distance between two points.
#[inline]
fn distance(&self, b: &Self) -> Self::RealField {
self.subtract(b).norm()
}
}
macro_rules! impl_vec_space(
($($T:ty),*) => {
$(
impl VectorSpace for $T{
type Field = $T;
}
impl NormedSpace for $T{
type RealField = $T;
type ComplexField = $T;
#[inline]
fn norm_squared(&self) -> Self::RealField {
self.modulus_squared()
}
#[inline]
fn norm(&self) -> Self::RealField {
self.modulus()
}
#[inline]
fn normalize(&self) -> Self {
*self / self.modulus()
}
#[inline]
fn normalize_mut(&mut self) -> Self::RealField {
let norm = self.modulus();
*self /= norm;
norm
}
#[inline]
fn try_normalize(&self, eps: Self::RealField) -> Option<Self> {
let norm = self.modulus_squared();
if norm > eps * eps {
Some(*self / self.modulus())
} else {
None
}
}
#[inline]
fn try_normalize_mut(&mut self, eps: Self::RealField) -> Option<Self::RealField> {
let sq_norm = self.modulus_squared();
if sq_norm > eps * eps {
let norm = self.modulus();
*self /= norm;
Some(norm)
} else {
None
}
}
}
)*
}
);
impl_vec_space!(f32, f64);
impl<N: Field + num::NumAssign> VectorSpace for Complex<N> {
type Field = N;
}
impl<N: RealField> NormedSpace for Complex<N> {
type RealField = N;
type ComplexField = N;
#[inline]
fn norm_squared(&self) -> Self::RealField {
self.norm_sqr()
}
#[inline]
fn norm(&self) -> Self::RealField {
self.norm_sqr().sqrt()
}
#[inline]
fn normalize(&self) -> Self {
*self / self.norm()
}
#[inline]
fn normalize_mut(&mut self) -> Self::RealField {
let norm = self.norm();
*self /= norm;
norm
}
#[inline]
fn try_normalize(&self, eps: Self::RealField) -> Option<Self> {
let norm = self.norm_sqr();
if norm > eps * eps {
Some(*self / norm.sqrt())
} else {
None
}
}
#[inline]
fn try_normalize_mut(&mut self, eps: Self::RealField) -> Option<Self::RealField> {
let sq_norm = self.norm_sqr();
if sq_norm > eps * eps {
let norm = sq_norm.sqrt();
*self /= norm;
Some(norm)
} else {
None
}
}
}
// Note: we can't implement FiniteDimVectorSpace for Complex because
// the `Complex` type does not implement Index.