1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
//! This module contains a Rust port of the `__u?divmodti4` compiler builtins
//! that are typically used for implementing 64-bit signed and unsigned division
//! on 32-bit platforms.
//!
//! This port is adapted to use 128-bit high and low words in order to implement
//! 256-bit division.
//!
//! This source is ported from LLVM project from C:
//! - signed division: <https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/divmodti4.c>
//! - unsigned division: <https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/udivmodti4.c>
use crate::{int::I256, uint::U256};
use core::mem::MaybeUninit;
#[inline(always)]
fn udiv256_by_128_to_128(u1: u128, u0: u128, mut v: u128, r: &mut u128) -> u128 {
const N_UDWORD_BITS: u32 = 128;
const B: u128 = 1 << (N_UDWORD_BITS / 2); // Number base (128 bits)
let (un1, un0): (u128, u128); // Norm. dividend LSD's
let (vn1, vn0): (u128, u128); // Norm. divisor digits
let (mut q1, mut q0): (u128, u128); // Quotient digits
let (un128, un21, un10): (u128, u128, u128); // Dividend digit pairs
let s = v.leading_zeros();
if s > 0 {
// Normalize the divisor.
v <<= s;
un128 = (u1 << s) | (u0 >> (N_UDWORD_BITS - s));
un10 = u0 << s; // Shift dividend left
} else {
// Avoid undefined behavior of (u0 >> 64).
un128 = u1;
un10 = u0;
}
// Break divisor up into two 64-bit digits.
vn1 = v >> (N_UDWORD_BITS / 2);
vn0 = v & 0xFFFF_FFFF_FFFF_FFFF;
// Break right half of dividend into two digits.
un1 = un10 >> (N_UDWORD_BITS / 2);
un0 = un10 & 0xFFFF_FFFF_FFFF_FFFF;
// Compute the first quotient digit, q1.
q1 = un128 / vn1;
let mut rhat = un128 - q1 * vn1;
// q1 has at most error 2. No more than 2 iterations.
while q1 >= B || q1 * vn0 > B * rhat + un1 {
q1 -= 1;
rhat += vn1;
if rhat >= B {
break;
}
}
un21 = un128
.wrapping_mul(B)
.wrapping_add(un1)
.wrapping_sub(q1.wrapping_mul(v));
// Compute the second quotient digit.
q0 = un21 / vn1;
rhat = un21 - q0 * vn1;
// q0 has at most error 2. No more than 2 iterations.
while q0 >= B || q0 * vn0 > B * rhat + un0 {
q0 -= 1;
rhat += vn1;
if rhat >= B {
break;
}
}
*r = (un21
.wrapping_mul(B)
.wrapping_add(un0)
.wrapping_sub(q0.wrapping_mul(v)))
>> s;
q1 * B + q0
}
#[allow(clippy::many_single_char_names)]
pub fn udivmod4(
res: &mut MaybeUninit<U256>,
a: &U256,
b: &U256,
rem: Option<&mut MaybeUninit<U256>>,
) {
// In the LLVM version on the x86_64 platform, `udiv256_by_128_to_128` would
// defer to `divq` instruction, which divides a 128-bit value by a 64-bit
// one returning a 64-bit value, making it very performant when dividing
// small values:
// ```
// du_int result;
// __asm__("divq %[v]"
// : "=a"(result), "=d"(*r)
// : [ v ] "r"(v), "a"(u0), "d"(u1));
// return result;
// ```
// Unfortunately, there is no 256-bit equivalent on x86_64, but we can still
// shortcut if the high and low values of the operands are 0:
if a.high() | b.high() == 0 {
if let Some(rem) = rem {
rem.write(U256::from_words(0, a.low() % b.low()));
}
res.write(U256::from_words(0, a.low() / b.low()));
return;
}
let dividend = *a;
let divisor = *b;
let quotient: U256;
let mut remainder: U256;
if divisor > dividend {
if let Some(rem) = rem {
rem.write(dividend);
}
res.write(U256::ZERO);
return;
}
// When the divisor fits in 128 bits, we can use an optimized path.
if *divisor.high() == 0 {
remainder = U256::ZERO;
if dividend.high() < divisor.low() {
// The result fits in 128 bits.
quotient = U256::from_words(
0,
udiv256_by_128_to_128(
*dividend.high(),
*dividend.low(),
*divisor.low(),
remainder.low_mut(),
),
);
} else {
// First, divide with the high part to get the remainder in dividend.s.high.
// After that dividend.s.high < divisor.s.low.
quotient = U256::from_words(
dividend.high() / divisor.low(),
udiv256_by_128_to_128(
dividend.high() % divisor.low(),
*dividend.low(),
*divisor.low(),
remainder.low_mut(),
),
);
}
if let Some(rem) = rem {
rem.write(remainder);
}
res.write(quotient);
return;
}
(quotient, remainder) = div_mod_knuth(÷nd, &divisor);
if let Some(rem) = rem {
rem.write(remainder);
}
res.write(quotient);
}
// See Knuth, TAOCP, Volume 2, section 4.3.1, Algorithm D.
// https://skanthak.homepage.t-online.de/division.html
#[inline]
pub fn div_mod_knuth(u: &U256, v: &U256) -> (U256, U256) {
const N_UDWORD_BITS: u32 = 128;
#[inline]
fn full_shl(a: &U256, shift: u32) -> [u128; 3] {
debug_assert!(shift < N_UDWORD_BITS);
let mut u = [0_u128; 3];
let u_lo = a.low() << shift;
let u_hi = a >> (N_UDWORD_BITS - shift);
u[0] = u_lo;
u[1] = *u_hi.low();
u[2] = *u_hi.high();
u
}
#[inline]
fn full_shr(u: &[u128; 3], shift: u32) -> U256 {
debug_assert!(shift < N_UDWORD_BITS);
let mut res = U256::ZERO;
*res.low_mut() = u[0] >> shift;
*res.high_mut() = u[1] >> shift;
// carry
if shift > 0 {
let sh = N_UDWORD_BITS - shift;
*res.low_mut() |= u[1] << sh;
*res.high_mut() |= u[2] << sh;
}
res
}
// returns (lo, hi)
#[inline]
const fn split_u128_to_u128(a: u128) -> (u128, u128) {
(a & 0xFFFFFFFFFFFFFFFF, a >> (N_UDWORD_BITS / 2))
}
// returns (lo, hi)
#[inline]
const fn fullmul_u128(a: u128, b: u128) -> (u128, u128) {
let (a0, a1) = split_u128_to_u128(a);
let (b0, b1) = split_u128_to_u128(b);
let mut t = a0 * b0;
let mut k: u128;
let w3: u128;
(w3, k) = split_u128_to_u128(t);
t = a1 * b0 + k;
let (w1, w2) = split_u128_to_u128(t);
t = a0 * b1 + w1;
k = t >> 64;
let w_hi = a1 * b1 + w2 + k;
let w_lo = (t << 64) + w3;
(w_lo, w_hi)
}
#[inline]
fn fullmul_u256_u128(a: &U256, b: u128) -> [u128; 3] {
let mut acc = [0_u128; 3];
let mut lo: u128;
let mut carry: u128;
let c: bool;
if b != 0 {
(lo, carry) = fullmul_u128(*a.low(), b);
acc[0] = lo;
acc[1] = carry;
(lo, carry) = fullmul_u128(*a.high(), b);
(acc[1], c) = acc[1].overflowing_add(lo);
acc[2] = carry + c as u128;
}
acc
}
#[inline]
const fn add_carry(a: u128, b: u128, c: bool) -> (u128, bool) {
let (res1, overflow1) = b.overflowing_add(c as u128);
let (res2, overflow2) = u128::overflowing_add(a, res1);
(res2, overflow1 || overflow2)
}
#[inline]
const fn sub_carry(a: u128, b: u128, c: bool) -> (u128, bool) {
let (res1, overflow1) = b.overflowing_add(c as u128);
let (res2, overflow2) = u128::overflowing_sub(a, res1);
(res2, overflow1 || overflow2)
}
// D1.
// Make sure 128th bit in v's highest word is set.
// If we shift both u and v, it won't affect the quotient
// and the remainder will only need to be shifted back.
let shift = v.high().leading_zeros();
debug_assert!(shift < N_UDWORD_BITS);
let v = v << shift;
debug_assert!(v.high() >> (N_UDWORD_BITS - 1) == 1);
// u will store the remainder (shifted)
let mut u = full_shl(u, shift);
// quotient
let mut q = U256::ZERO;
let v_n_1 = *v.high();
let v_n_2 = *v.low();
// D2. D7. - unrolled loop j == 0, n == 2, m == 0 (only one possible iteration)
let mut r_hat: u128 = 0;
let u_jn = u[2];
// D3.
// q_hat is our guess for the j-th quotient digit
// q_hat = min(b - 1, (u_{j+n} * b + u_{j+n-1}) / v_{n-1})
// b = 1 << WORD_BITS
// Theorem B: q_hat >= q_j >= q_hat - 2
let mut q_hat = if u_jn < v_n_1 {
//let (mut q_hat, mut r_hat) = _div_mod_u128(u_jn, u[j + n - 1], v_n_1);
let mut q_hat = udiv256_by_128_to_128(u_jn, u[1], v_n_1, &mut r_hat);
let mut overflow: bool;
// this loop takes at most 2 iterations
loop {
let another_iteration = {
// check if q_hat * v_{n-2} > b * r_hat + u_{j+n-2}
let (lo, hi) = fullmul_u128(q_hat, v_n_2);
hi > r_hat || (hi == r_hat && lo > u[0])
};
if !another_iteration {
break;
}
q_hat -= 1;
(r_hat, overflow) = r_hat.overflowing_add(v_n_1);
// if r_hat overflowed, we're done
if overflow {
break;
}
}
q_hat
} else {
// here q_hat >= q_j >= q_hat - 1
u128::MAX
};
// ex. 20:
// since q_hat * v_{n-2} <= b * r_hat + u_{j+n-2},
// either q_hat == q_j, or q_hat == q_j + 1
// D4.
// let's assume optimistically q_hat == q_j
// subtract (q_hat * v) from u[j..]
let q_hat_v = fullmul_u256_u128(&v, q_hat);
// u[j..] -= q_hat_v;
let mut c = false;
(u[0], c) = sub_carry(u[0], q_hat_v[0], c);
(u[1], c) = sub_carry(u[1], q_hat_v[1], c);
(u[2], c) = sub_carry(u[2], q_hat_v[2], c);
// D6.
// actually, q_hat == q_j + 1 and u[j..] has overflowed
// highly unlikely ~ (1 / 2^127)
if c {
q_hat -= 1;
// add v to u[j..]
c = false;
(u[0], c) = add_carry(u[0], *v.low(), c);
(u[1], c) = add_carry(u[1], *v.high(), c);
u[2] = u[2].wrapping_add(c as u128);
}
// D5.
*q.low_mut() = q_hat;
// D8.
let remainder = full_shr(&u, shift);
(q, remainder)
}
#[inline]
pub fn udiv2(r: &mut U256, a: &U256) {
let (a, b) = (*r, a);
// SAFETY: `udivmod4` does not write `MaybeUninit::uninit()` to `res` and
// `U256` does not implement `Drop`.
let res = unsafe { &mut *(r as *mut U256).cast() };
udivmod4(res, &a, b, None);
}
#[inline]
pub fn udiv3(r: &mut MaybeUninit<U256>, a: &U256, b: &U256) {
udivmod4(r, a, b, None);
}
#[inline]
pub fn urem2(r: &mut U256, a: &U256) {
let mut res = MaybeUninit::uninit();
let (a, b) = (*r, a);
// SAFETY: `udivmod4` does not write `MaybeUninit::uninit()` to `rem` and
// `U256` does not implement `Drop`.
let r = unsafe { &mut *(r as *mut U256).cast() };
udivmod4(&mut res, &a, b, Some(r));
}
#[inline]
pub fn urem3(r: &mut MaybeUninit<U256>, a: &U256, b: &U256) {
let mut res = MaybeUninit::uninit();
udivmod4(&mut res, a, b, Some(r));
}
pub fn idivmod4(
res: &mut MaybeUninit<I256>,
a: &I256,
b: &I256,
rem: Option<&mut MaybeUninit<I256>>,
) {
const BITS_IN_TWORD_M1: u32 = 255;
let s_a = a >> BITS_IN_TWORD_M1; // s_a = a < 0 ? -1 : 0
let mut s_b = b >> BITS_IN_TWORD_M1; // s_b = b < 0 ? -1 : 0
let a = (a ^ s_a).wrapping_sub(s_a); // negate if s_a == -1
let b = (b ^ s_b).wrapping_sub(s_b); // negate if s_b == -1
s_b ^= s_a; // sign of quotient
udivmod4(
cast!(uninit: res),
cast!(ref: &a),
cast!(ref: &b),
cast!(optuninit: rem),
);
let q = unsafe { res.assume_init_ref() };
let q = (q ^ s_b).wrapping_sub(s_b); // negate if s_b == -1
res.write(q);
if let Some(rem) = rem {
let r = unsafe { rem.assume_init_ref() };
let r = (r ^ s_a).wrapping_sub(s_a);
rem.write(r);
}
}
#[inline]
pub fn idiv2(r: &mut I256, a: &I256) {
let (a, b) = (*r, a);
// SAFETY: `udivmod4` does not write `MaybeUninit::uninit()` to `res` and
// `U256` does not implement `Drop`.
let res = unsafe { &mut *(r as *mut I256).cast() };
idivmod4(res, &a, b, None);
}
#[inline]
pub fn idiv3(r: &mut MaybeUninit<I256>, a: &I256, b: &I256) {
idivmod4(r, a, b, None);
}
#[inline]
pub fn irem2(r: &mut I256, a: &I256) {
let mut res = MaybeUninit::uninit();
let (a, b) = (*r, a);
// SAFETY: `udivmod4` does not write `MaybeUninit::uninit()` to `rem` and
// `U256` does not implement `Drop`.
let r = unsafe { &mut *(r as *mut I256).cast() };
idivmod4(&mut res, &a, b, Some(r));
}
#[inline]
pub fn irem3(r: &mut MaybeUninit<I256>, a: &I256, b: &I256) {
let mut res = MaybeUninit::uninit();
idivmod4(&mut res, a, b, Some(r));
}
#[cfg(test)]
mod tests {
use super::*;
use crate::AsU256;
fn udiv(a: impl AsU256, b: impl AsU256) -> U256 {
let mut r = MaybeUninit::uninit();
udiv3(&mut r, &a.as_u256(), &b.as_u256());
unsafe { r.assume_init() }
}
fn urem(a: impl AsU256, b: impl AsU256) -> U256 {
let mut r = MaybeUninit::uninit();
urem3(&mut r, &a.as_u256(), &b.as_u256());
unsafe { r.assume_init() }
}
#[test]
fn division() {
// 0 X
// ---
// 0 X
assert_eq!(udiv(100, 9), 11);
// 0 X
// ---
// K X
assert_eq!(udiv(!0u128, U256::ONE << 128u32), 0);
// K 0
// ---
// K 0
assert_eq!(udiv(U256::from_words(100, 0), U256::from_words(10, 0)), 10);
// K K
// ---
// K 0
assert_eq!(udiv(U256::from_words(100, 1337), U256::ONE << 130u32), 25);
assert_eq!(
udiv(U256::from_words(1337, !0), U256::from_words(63, 0)),
21
);
// K X
// ---
// 0 K
assert_eq!(
udiv(U256::from_words(42, 0), U256::ONE),
U256::from_words(42, 0),
);
assert_eq!(
udiv(U256::from_words(42, 42), U256::ONE << 42),
42u128 << (128 - 42),
);
assert_eq!(
udiv(U256::from_words(1337, !0), 0xc0ffee),
35996389033280467545299711090127855,
);
assert_eq!(
udiv(U256::from_words(42, 0), 99),
144362216269489045105674075880144089708,
);
// K X
// ---
// K K
assert_eq!(
udiv(U256::from_words(100, 100), U256::from_words(1000, 1000)),
0,
);
assert_eq!(
udiv(U256::from_words(1337, !0), U256::from_words(43, !0)),
30,
);
}
#[test]
#[should_panic]
fn division_by_zero() {
udiv(1, 0);
}
#[test]
fn remainder() {
// 0 X
// ---
// 0 X
assert_eq!(urem(100, 9), 1);
// 0 X
// ---
// K X
assert_eq!(urem(!0u128, U256::ONE << 128u32), !0u128);
// K 0
// ---
// K 0
assert_eq!(urem(U256::from_words(100, 0), U256::from_words(10, 0)), 0);
// K K
// ---
// K 0
assert_eq!(urem(U256::from_words(100, 1337), U256::ONE << 130u32), 1337);
assert_eq!(
urem(U256::from_words(1337, !0), U256::from_words(63, 0)),
U256::from_words(14, !0),
);
// K X
// ---
// 0 K
assert_eq!(urem(U256::from_words(42, 0), U256::ONE), 0);
assert_eq!(urem(U256::from_words(42, 42), U256::ONE << 42), 42);
assert_eq!(urem(U256::from_words(1337, !0), 0xc0ffee), 1910477);
assert_eq!(urem(U256::from_words(42, 0), 99), 60);
// K X
// ---
// K K
assert_eq!(
urem(U256::from_words(100, 100), U256::from_words(1000, 1000)),
U256::from_words(100, 100),
);
assert_eq!(
urem(U256::from_words(1337, !0), U256::from_words(43, !0)),
U256::from_words(18, 29),
);
}
#[test]
#[should_panic]
fn remainder_by_zero() {
urem(1, 0);
}
}