1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
use std::collections::{BTreeMap, VecDeque};
use withkey::WithKey;

// TODO: better error handling. Do not wrap Result types, but handle Results automatically.

/// A type which reads ahead by `bufsize` elements and sorts within.
pub struct BufferedSortIter<K, I, T, E>
where
    I: Iterator<Item = std::result::Result<T, E>>,
    T: WithKey<K>,
{
    single_iter: I,
    sorted_buf: BTreeMap<K, VecDeque<T>>,
    done_reading: bool,
    highest_key: Option<K>,
}

impl<K: std::cmp::Ord + Clone, I, T, E: std::fmt::Debug> BufferedSortIter<K, I, T, E>
where
    I: Iterator<Item = std::result::Result<T, E>>,
    T: WithKey<K>,
{
    pub fn new(single_iter: I, bufsize: usize) -> Result<Self, E> {
        let sorted_buf = BTreeMap::new();
        let mut result = Self {
            single_iter,
            sorted_buf,
            done_reading: false,
            highest_key: None,
        };

        let mut count = 0;
        while count < bufsize {
            count += 1;
            if !result.read_next()? {
                break;
            }
        }
        Ok(result)
    }

    pub fn get_ref(&self) -> &I {
        &self.single_iter
    }

    pub fn into_inner(self) -> I {
        self.single_iter
    }

    // read a single item from the iterator. returns true if should read again.
    #[inline]
    fn read_next(&mut self) -> Result<bool, E> {
        if self.done_reading {
            return Ok(false);
        }
        match self.single_iter.next() {
            None => {
                self.done_reading = true;
                Ok(false)
            }
            Some(result_el) => {
                let el = result_el?;
                let key = el.key();
                let rows_entry = &mut self.sorted_buf.entry(key).or_default();
                rows_entry.push_back(el);
                Ok(true)
            }
        }
    }

    // get the first item, return whether the key must be removed and the item
    #[inline]
    fn empty_first(&mut self) -> Option<std::result::Result<T, E>> {
        let mut remove_key = None;
        let result: T = {
            let mut first = self.sorted_buf.iter_mut().next();
            match first {
                None => return None,
                Some((this_key, ref mut this_el_vec)) => {
                    if let Some(ref hk) = self.highest_key {
                        assert!(this_key >= hk, "failed to sort data (bufsize too small?)");
                    }
                    self.highest_key = Some(this_key.clone());

                    let first_el = this_el_vec.pop_front();
                    if this_el_vec.is_empty() {
                        remove_key = Some(this_key.clone());
                    }
                    first_el.unwrap()
                }
            }
        };

        if let Some(rk) = remove_key {
            self.sorted_buf.remove(&rk);
        }

        Some(Ok(result))
    }
}

impl<
        K: std::cmp::Ord + std::fmt::Debug + std::cmp::PartialEq + std::cmp::PartialOrd + Clone,
        I,
        T,
        E: std::fmt::Debug,
    > Iterator for BufferedSortIter<K, I, T, E>
where
    I: Iterator<Item = std::result::Result<T, E>>,
    T: WithKey<K>,
{
    type Item = std::result::Result<T, E>;
    fn next(&mut self) -> std::option::Option<<Self as Iterator>::Item> {
        match self.read_next() {
            Ok(_) => {}
            Err(e) => {
                // The error may be desynchronized somewhat from element in iterator
                // from which it came, but at least it gets
                // propagated up without panic.
                return Some(Err(e));
            }
        };
        self.empty_first()
    }
}

/// A type takes a sorted iterator and returns grouped results.
///
/// Panics if the input iterator is not sorted.
pub struct AscendingGroupIter<K, I, T, E>
where
    I: Iterator<Item = std::result::Result<T, E>>,
    T: WithKey<K>,
{
    single_iter: I,
    peek: Option<std::result::Result<T, E>>,
    key_type: std::marker::PhantomData<K>,
}

impl<K, I, T, E> AscendingGroupIter<K, I, T, E>
where
    I: Iterator<Item = std::result::Result<T, E>>,
    T: WithKey<K>,
{
    pub fn new(mut single_iter: I) -> Self {
        let peek = single_iter.next();
        Self {
            single_iter,
            peek,
            key_type: std::marker::PhantomData,
        }
    }

    pub fn get_ref(&self) -> &I {
        &self.single_iter
    }

    pub fn into_inner(self) -> I {
        self.single_iter
    }
}

#[derive(Debug, PartialEq, Eq)]
pub struct GroupedRows<K, T: WithKey<K>> {
    pub group_key: K,
    pub rows: Vec<T>,
}

impl<K: std::fmt::Debug + std::cmp::PartialEq + std::cmp::PartialOrd, I, T: WithKey<K>, E> Iterator
    for AscendingGroupIter<K, I, T, E>
where
    I: Iterator<Item = std::result::Result<T, E>>,
    T: WithKey<K>,
{
    type Item = std::result::Result<GroupedRows<K, T>, E>;
    fn next(&mut self) -> std::option::Option<<Self as Iterator>::Item> {
        match self.peek.take() {
            None => None, // no more rows, return None
            Some(row_result) => {
                match row_result {
                    Ok(next_seed) => {
                        // first row of new group_key
                        let mut item = GroupedRows {
                            group_key: next_seed.key(),
                            rows: vec![next_seed],
                        };
                        loop {
                            // more rows of new group_key until seed for next
                            match self.single_iter.next() {
                                None => break, // no more rows in file, finish this group_key
                                Some(result_val) => {
                                    match result_val {
                                        Ok(val) => {
                                            // got another row
                                            if val.key() == item.group_key {
                                                item.rows.push(val);
                                            } else {
                                                if val.key().partial_cmp(&item.group_key)
                                                    != Some(std::cmp::Ordering::Greater)
                                                {
                                                    panic!("key is not monotonically ascending ({:?} < {:?})",
                                                        val.key(), item.group_key);
                                                }
                                                self.peek = Some(Ok(val));
                                                break;
                                            }
                                        }
                                        Err(e) => return Some(Err(e)),
                                    }
                                }
                            }
                        }
                        Some(Ok(item))
                    }
                    Err(e) => Some(Err(e)),
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(PartialEq)]
    struct Foo {
        x: u8,
    }
    impl WithKey<u8> for Foo {
        fn key(&self) -> u8 {
            self.x
        }
    }

    #[test]
    fn groupby_empty() {
        let foos: Vec<Foo> = vec![];
        let foos_iter = foos.into_iter().map(|x| {
            let r: Result<Foo, u8> = Ok(x);
            r
        });
        let mut group_iter = AscendingGroupIter::new(foos_iter);
        assert!(group_iter.next().is_none());
    }

    #[test]
    fn groupby_monotonic() {
        let foos = vec![
            Foo { x: 1 },
            Foo { x: 1 },
            Foo { x: 2 },
            Foo { x: 2 },
            Foo { x: 3 },
        ];
        let foos_iter = foos.into_iter().map(|x| {
            let r: Result<Foo, u8> = Ok(x);
            r
        });
        let mut group_iter = AscendingGroupIter::new(foos_iter);
        assert!(
            group_iter.next()
                == Some(Ok(GroupedRows {
                    group_key: 1,
                    rows: vec![Foo { x: 1 }, Foo { x: 1 }]
                }))
        );
        assert!(
            group_iter.next()
                == Some(Ok(GroupedRows {
                    group_key: 2,
                    rows: vec![Foo { x: 2 }, Foo { x: 2 }]
                }))
        );
        assert!(
            group_iter.next()
                == Some(Ok(GroupedRows {
                    group_key: 3,
                    rows: vec![Foo { x: 3 }]
                }))
        );
        assert!(group_iter.next().is_none());
    }

    #[test]
    #[should_panic]
    fn groupby_nonmonotonic() {
        let foos = vec![Foo { x: 1 }, Foo { x: 3 }, Foo { x: 2 }];
        let foos_iter = foos.into_iter().map(|x| {
            let r: Result<Foo, u8> = Ok(x);
            r
        });
        let mut group_iter = AscendingGroupIter::new(foos_iter);
        assert!(
            group_iter.next()
                == Some(Ok(GroupedRows {
                    group_key: 1,
                    rows: vec![Foo { x: 1 }, Foo { x: 1 }]
                }))
        );
        assert!(
            group_iter.next()
                == Some(Ok(GroupedRows {
                    group_key: 2,
                    rows: vec![Foo { x: 2 }, Foo { x: 2 }]
                }))
        );
        assert!(
            group_iter.next()
                == Some(Ok(GroupedRows {
                    group_key: 3,
                    rows: vec![Foo { x: 3 }]
                }))
        );
        assert!(group_iter.next().is_none());
    }

    #[test]
    fn buffered_sort_empty() {
        let foos = vec![];
        let foos_iter = foos.into_iter().map(|x| {
            let r: Result<Foo, u8> = Ok(x);
            r
        });
        let mut sorted_iter = BufferedSortIter::new(foos_iter, 100).unwrap();
        assert!(sorted_iter.next().is_none());
    }

    #[test]
    fn buffered_sort_results() {
        let foos = vec![
            Foo { x: 1 },
            Foo { x: 3 },
            Foo { x: 1 },
            Foo { x: 4 },
            Foo { x: 3 },
            Foo { x: 3 },
            Foo { x: 3 },
            Foo { x: 3 },
            Foo { x: 1 },
        ];
        let foos_iter = foos.into_iter().map(|x| {
            let r: Result<Foo, u8> = Ok(x);
            r
        });
        let mut sorted_iter = BufferedSortIter::new(foos_iter, 100).unwrap();
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 1 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 1 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 1 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 4 })));
        assert!(sorted_iter.next().is_none());
    }

    #[test]
    #[should_panic]
    fn buffered_sort_results_too_spread() {
        // the bufsize is only 2 here but the disordered items extend further apart, so this should fail.
        let foos = vec![
            Foo { x: 1 },
            Foo { x: 3 },
            Foo { x: 1 },
            Foo { x: 4 },
            Foo { x: 3 },
            Foo { x: 3 },
            Foo { x: 3 },
            Foo { x: 3 },
            Foo { x: 1 },
        ];
        let foos_iter = foos.into_iter().map(|x| {
            let r: Result<Foo, u8> = Ok(x);
            r
        });
        let mut sorted_iter = BufferedSortIter::new(foos_iter, 2).unwrap();
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 1 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 1 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 1 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 4 })));
        assert!(sorted_iter.next().is_none());
    }

    #[test]
    fn buffered_sort_results_partial() {
        // here bufsize is 4, which is enough
        let foos = vec![
            Foo { x: 1 },
            Foo { x: 3 },
            Foo { x: 4 },
            Foo { x: 1 },
            Foo { x: 3 },
            Foo { x: 3 },
            Foo { x: 3 },
            Foo { x: 3 },
        ];
        let foos_iter = foos.into_iter().map(|x| {
            let r: Result<Foo, u8> = Ok(x);
            r
        });
        let mut sorted_iter = BufferedSortIter::new(foos_iter, 4).unwrap();
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 1 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 1 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 3 })));
        assert!(sorted_iter.next() == Some(Ok(Foo { x: 4 })));
        assert!(sorted_iter.next().is_none());
    }
}