1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
//! Interval log parsing and writing.
//!
//! Interval logs, as handled by the Java implementation's `HistogramLogWriter`,
//! `HistogramLogReader`, and `HistogramLogProcessor`, are a way to record a sequence of histograms
//! over time. Suppose you were running a load test for an hour: you might want to record a
//! histogram per second or minute so that you could correlate measurements with behavior you might
//! see in logs, etc.
//!
//! An interval log contains some initial metadata, then a sequence of histograms, each with some
//! additional metadata (timestamps, etc). See `IntervalLogHistogram`.
//!
//! The intervals in the log should be ordered by start timestamp. It's possible to write (and
//! parse) logs with intervals in any order, but the expectation is that they will be sorted.
//!
//! To parse a log, see `IntervalLogIterator`. To write a log, see `IntervalLogWriterBuilder`.
//!
//! # Timestamps
//!
//! Each interval has a timestamp in seconds associated with it. However, it's not necessarily as
//! simple as just interpreting the number as seconds since the epoch. There are two optional pieces
//! of header metadata: "StartTime" and "BaseTime". Neither, one, or both of these may be present.
//! It is possible to have multiple StartTime or BaseTime entries in the log, or even interleaved
//! with interval histograms, but that is confusing, so this API prevents you from doing so.
//!
//! When BaseTime is present, per-interval timestamps are the number of seconds since BaseTime. When
//! it is absent, the per-interval timestamps represent fractional seconds since the epoch (aka
//! Unix time). BaseTime is useful because it allows you to have somewhat human-readable timestamps
//! for each interval -- it's easier to see 245.3 and see that that's 4 minutes after the start of
//! whatever it is you're doing than it is to mentally parse a Unix timestamp. Naturally, you can
//! always calculate the deltas after the fact if you're willing to write a little tooling, but in
//! some cases log files are consumed by humans too.
//!
//! While BaseTime is used to redefine per-interval timestamps for human readability, StartTime
//! provides information about when the process that is generating the log reached some "start"
//! condition. It's frequently the case that intervals will start some seconds after the process
//! started, whether due to initial warmup before a benchmark or because it just takes a
//! while to start up. If this is relevant to your workload, use StartTime to record the actual
//! process start time (or other relevant "start" condition, like when a benchmark begins on an
//! already long-running process). You could then use this when processing a log to more accurately
//! plot interval data over time. Put differently, StartTime doesn't change the interpretation of
//! interval timestamps directly like BaseTime; instead, it provides a hint to the consumer of the
//! log that the "start" (whatever that means to you -- process start, etc) was at a different time
//! than that associated with the first interval.
//!
//! #### Example scenario
//!
//! To explain their usage, suppose we're running a multi-hour benchmark on a process that starts
//! up at a Unix time of 1500000000. We'll be recording separate log files per hour just to
//! demonstrate the interaction between BaseTime, StartTime, and interval log timestamps.
//!
//! The process starts up, warms up its caches, JIT compiles, etc and is ready to start its
//! benchmark 40 seconds later, so we create the first interval log file and record a StartTime of
//! 1500000040. If the actual process start (rather than benchmark start) is more useful to you,
//! using a StartTime of 1500000000 would be reasonable, but we'll stick with 1500000040.
//!
//! We'll use a BaseTime of 1500000040 because that's when the benchmark began, but 1500000000 would
//! also be a reasonable choice here -- it would just make the per-interval deltas 40 seconds
//! larger, which might be a more useful way of recording them, depending on the situation.
//!
//! The benchmark produces an interval histogram for each 60 seconds of workload, so the first one
//! is ready at 1500000100, and is recorded with a delta timestamp of 60. This goes on for another
//! hour, with the last one being 3540 seconds after the start of the benchmark with a corresponding
//! delta of 3540.
//!
//! At the start of the second hour, the time is 1500003640 and the first log file is ended (which
//! is straightforward: just stop writing to it and close the file) and the second log file is
//! opened. It still uses a StartTime of 1500000040 because we want to represent that this log
//! pertains to something that started an hour ago, but we'll use a BaseTime of 1500003640 so that
//! our delta timestamps start over at 0. Again, you could just as well decide to use the same
//! BaseTime of 1500000040 if you prefer, but it's arguably easier for a human to parse "h hours
//! into the benchmark, s seconds past the hour" than it is to mentally divide by 3600, so we'll
//! go with the new BaseTime.
//!
//! Suppose now you wanted to process these logs and show information (e.g. the 0.999th quantile of
//! each interval) as the y-axis on a plot where time is the x-axis. You would want to have
//! StartTime be the zero of the x-axis. For each interval, calculate the Unix time by adding its
//! timestamp to BaseTime, where BaseTime is assumed to be zero if it's not specified. The point on
//! the x-axis for that interval would be the result of subtracting StartTime from that Unix time.
//! As an example, the 17th minute in the 2nd hour would have an interval timestamp of approximately
//! 1020, which when added to 1500003640 is 1500004660. The difference between StartTime and then is
//! 4620. You might choose to display that in units of minutes, which would be 4620 / 60 = 77.
//!
//! #### Java interop
//!
//! Since you may be interoperating with the Java reference implementation, here's a summary of the
//! logic used by the `HistogramLogReader` class for StartTime and BaseTime. It's slightly different
//! than what was described above, presumably for legacy compatibility reasons. This class stores
//! the StartTime as a field which is exposed via a getter, and also integrates filtering intervals
//! based on windows for either "absolute" (Unix time) timestamps or "offset" timestamps (delta vs
//! the StartTime), so if you're using that filtering functionality, you need to understand how it
//! ends up setting its internal version of StartTime.
//!
//! - Neither StartTime nor BaseTime are present: interval timestamps are interpreted as seconds
//! since the epoch. The first interval's timestamp is stored to the StartTime field.
//! - StartTime is present: StartTime is a number of seconds since epoch, and interval timestamps
//! may be interpreted as deltas to be added to StartTime or as "absolute" Unix time depending on a
//! heuristic. In other words, the heuristic chooses between setting the effective BaseTime to 0 or
//! to StartTime. Specifically, the heuristic interprets interval timestamps as deltas if they are
//! more than a year's worth of seconds smaller than StartTime and as absolute timestamps otherwise.
//! - BaseTime is present: BaseTime is a number of seconds since epoch, and interval timestamps are
//! interpreted as deltas. The first interval's (delta) timestamp is stored to the StartTime field.
//! This is likely a bug, since StartTime should be an absolute timestamp, and appears to cause
//! erroneous behavior when filtering by offset timestamps.
//! - BaseTime and StartTime are present: The BaseTime is used like it is when it's the only one
//! present: it's a number of seconds since epoch that serves as the starting point for the
//! per-interval deltas to get a wall-clock time for each interval. No heuristics are applied to
//! guess whether or not the intervals are absolute or deltas.
//!
//! The Java implementation also supports re-setting the StartTime and BaseTime if those entries
//! exist more than once in the log. Suppose that you had an hour's worth of per-minute intervals,
//! and then you set another StartTime to the current time and added a second hour's worth of
//! intervals. Filtering for "all intervals between 5 and 10 minutes past the start" would result in
//! two disjoint sequences of intervals, which is at the very least arguably unintuitive. However,
//! you may well be working with log files that are structured that way, so this implementation's
//! `IntervalLogIterator` will expose multiple StartTime, etc, entries as they appear in the log
//! file.
//!
//! # Examples
//!
//! Parse a single interval from a log.
//!
//! ```
//! use std::time;
//! use hdrhistogram::serialization::interval_log;
//!
//! // two newline-separated log lines: a comment, then an interval
//! let log = b"#I'm a comment\nTag=t,0.127,1.007,2.769,base64EncodedHisto\n";
//!
//! let mut iter = interval_log::IntervalLogIterator::new(&log[..]);
//!
//! // the comment is consumed and ignored by the parser, so the first event is an Interval
//! match iter.next().unwrap() {
//! Ok(interval_log::LogEntry::Interval(h)) => {
//! assert_eq!(time::Duration::new(0, 127_000_000), h.start_timestamp());
//! }
//! _ => panic!()
//! }
//!
//! // there are no more lines in the log; iteration complete
//! assert_eq!(None, iter.next());
//! ```
//!
//! Skip logs that started before 3 seconds.
//!
//! ```
//! use hdrhistogram::serialization::interval_log;
//!
//! let log = "\
//! #I'm a comment\n\
//! Tag=a,0.123,1.007,2.769,base64EncodedHisto\n\
//! 1.456,1.007,2.769,base64EncodedHisto\n\
//! 3.789,1.007,2.769,base64EncodedHisto\n\
//! Tag=b,4.123,1.007,2.769,base64EncodedHisto\n\
//! 5.456,1.007,2.769,base64EncodedHisto\n\
//! #Another comment\n"
//! .as_bytes();
//!
//! let iter = interval_log::IntervalLogIterator::new(&log);
//!
//! let count = iter
//! // only look at intervals (which are the only non-comment lines in this log)
//! .filter_map(|e| match e {
//! Ok(interval_log::LogEntry::Interval(ilh)) => Some(ilh),
//! _ => None
//! })
//! // do any filtering you want
//! .filter(|ilh| ilh.start_timestamp().as_secs() >= 3)
//! .count();
//!
//! assert_eq!(3, count);
//! ```
//!
//! Write a log.
//!
//! ```
//! use std::{str, time};
//! use hdrhistogram;
//! use hdrhistogram::serialization;
//! use hdrhistogram::serialization::interval_log;
//!
//! let mut buf = Vec::new();
//! let mut serializer = serialization::V2Serializer::new();
//!
//! let mut h = hdrhistogram::Histogram::<u64>::new_with_bounds(
//! 1, u64::max_value(), 3).unwrap();
//! h.record(12345).unwrap();
//!
//! // limit scope of mutable borrow of `buf`
//! {
//! let now = time::SystemTime::now();
//! let mut log_writer = interval_log::IntervalLogWriterBuilder::new()
//! .add_comment("Comments are great")
//! .with_start_time(now)
//! .begin_log_with(&mut buf, &mut serializer)
//! .unwrap();
//!
//! log_writer.write_comment(
//! "You can have comments anywhere in the log").unwrap();
//!
//! log_writer
//! .write_histogram(
//! &h,
//! now.elapsed().unwrap(),
//! time::Duration::new(12, 345_678_901),
//! interval_log::Tag::new("im-a-tag")
//! )
//! .unwrap();
//! }
//!
//! // `buf` is now full of stuff; we check for the first line
//! assert_eq!("#Comments are great\n", &str::from_utf8(&buf).unwrap()[0..20]);
//! ```
use std::cmp::Ordering;
use std::error::Error;
use std::fmt::Write;
use std::str::FromStr;
use std::{fmt, io, ops, str, time};
use base64::Engine as _;
use nom::branch::alt;
use nom::bytes::complete::{tag, take, take_until, take_while1};
use nom::character::complete::char;
use nom::character::is_digit;
use nom::combinator::{complete, map_res, opt, recognize};
use nom::error::ErrorKind;
use nom::number::complete::double;
use nom::{Err, IResult};
use super::super::{Counter, Histogram};
use super::Serializer;
/// Prepare an `IntervalLogWriter`.
///
/// This type only allows writing comments and headers. Once you're done writing those things, use
/// `into_log_writer()` to convert this into an `IntervalLogWriter`.
pub struct IntervalLogWriterBuilder {
comments: Vec<String>,
start_time: Option<f64>,
base_time: Option<f64>,
max_value_divisor: f64,
}
impl Default for IntervalLogWriterBuilder {
fn default() -> Self {
Self::new()
}
}
impl IntervalLogWriterBuilder {
/// Create a new log writer that writes to `writer` and serializes histograms with `serializer`.
pub fn new() -> IntervalLogWriterBuilder {
IntervalLogWriterBuilder {
comments: Vec::new(),
start_time: None,
base_time: None,
max_value_divisor: 1.0,
}
}
/// Add a comment line to be written when the writer is built.
///
/// Comments containing '\n' will be transformed into multiple lines of comments.
pub fn add_comment(&mut self, s: &str) -> &mut Self {
self.comments.push(s.to_owned());
self
}
/// Set a StartTime. See the module-level documentation for more info.
///
/// This can be called multiple times, but only the value for the most recent invocation will
/// be written.
pub fn with_start_time(&mut self, time: time::SystemTime) -> &mut Self {
self.start_time = Some(system_time_as_fp_seconds(time));
self
}
/// Set a BaseTime. See the module-level documentation for more info.
///
/// This can be called multiple times, but only the value for the most recent invocation will
/// be written.
pub fn with_base_time(&mut self, time: time::SystemTime) -> &mut Self {
self.base_time = Some(system_time_as_fp_seconds(time));
self
}
/// Set a max value divisor.
///
/// This is used to scale down the max value part of an interval log to something that may be
/// more human readable. The max value in the log is only for human consumption, so you might
/// prefer to divide by 10<sup>9</sup> to turn nanoseconds into fractional seconds, for
/// instance.
///
/// If this is not set, 1.0 will be used.
///
/// This can be called multiple times, but only the value for the most recent invocation will
/// be written.
pub fn with_max_value_divisor(&mut self, max_value_divisor: f64) -> &mut Self {
self.max_value_divisor = max_value_divisor;
self
}
/// Build a LogWriter and apply any configured headers.
#[allow(clippy::float_cmp)]
pub fn begin_log_with<'a, 'b, W: 'a + io::Write, S: 'b + Serializer>(
&self,
writer: &'a mut W,
serializer: &'b mut S,
) -> Result<IntervalLogWriter<'a, 'b, W, S>, io::Error> {
let mut internal_writer = InternalLogWriter {
writer,
serializer,
text_buf: String::new(),
serialize_buf: Vec::new(),
max_value_divisor: self.max_value_divisor,
};
for c in &self.comments {
internal_writer.write_comment(&c)?;
}
if let Some(st) = self.start_time {
internal_writer.write_fmt(format_args!(
"#[StartTime: {:.3} (seconds since epoch)]\n",
st
))?;
}
if let Some(bt) = self.base_time {
internal_writer.write_fmt(format_args!(
"#[BaseTime: {:.3} (seconds since epoch)]\n",
bt
))?;
}
// The Java impl doesn't write a comment for this but it's confusing to silently modify the
// max value without leaving a trace
if self.max_value_divisor != 1.0_f64 {
internal_writer.write_fmt(format_args!(
"#[MaxValueDivisor: {:.3}]\n",
self.max_value_divisor
))?;
}
Ok(IntervalLogWriter { internal_writer })
}
}
/// Writes interval histograms in an interval log.
///
/// This isn't created directly; start with an `IntervalLogWriterBuilder`. Once you've written the
/// headers and ended up with an `IntervalLogWriter`, typical usage would be to write a histogram
/// at regular intervals (e.g. once a second).
///
/// ```
/// use hdrhistogram::serialization;
/// use hdrhistogram::serialization::interval_log;
///
/// let mut buf = Vec::new();
/// let mut serializer = serialization::V2Serializer::new();
///
/// // create a writer via a builder
/// let mut writer = interval_log::IntervalLogWriterBuilder::new()
/// .begin_log_with(&mut buf, &mut serializer)
/// .unwrap();
///
/// writer.write_comment("Comment 2").unwrap();
///
/// // .. write some intervals
/// ```
pub struct IntervalLogWriter<'a, 'b, W: 'a + io::Write, S: 'b + Serializer> {
internal_writer: InternalLogWriter<'a, 'b, W, S>,
}
impl<'a, 'b, W: 'a + io::Write, S: 'b + Serializer> IntervalLogWriter<'a, 'b, W, S> {
/// Write a comment line.
///
/// Comments containing '\n' will be transformed into multiple lines of comments.
pub fn write_comment(&mut self, s: &str) -> io::Result<()> {
self.internal_writer.write_comment(s)
}
/// Write an interval histogram.
///
/// `start_timestamp` is the time since the epoch in seconds that measurements started being
/// recorded in this interval. If you're using a StartTime or BaseTime offset, you should
/// instead use a delta since that time. See the discussion about timestamps in the module-level
/// documentation.
///
/// `duration` is the duration of the interval in seconds.
///
/// `tag` is an optional tag for this histogram.
pub fn write_histogram<T: Counter>(
&mut self,
h: &Histogram<T>,
start_timestamp: time::Duration,
duration: time::Duration,
tag: Option<Tag>,
) -> Result<(), IntervalLogWriterError<S::SerializeError>> {
self.internal_writer
.write_histogram(h, start_timestamp, duration, tag)
}
}
/// Errors that can occur while writing a log.
#[derive(Debug)]
pub enum IntervalLogWriterError<E> {
/// Histogram serialization failed.
SerializeError(E),
/// An i/o error occurred.
IoError(io::Error),
}
impl<E> From<io::Error> for IntervalLogWriterError<E> {
fn from(e: io::Error) -> Self {
IntervalLogWriterError::IoError(e)
}
}
impl<E: fmt::Display + fmt::Debug> fmt::Display for IntervalLogWriterError<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
IntervalLogWriterError::SerializeError(e) => {
write!(f, "Histogram serialization failed: {}", e)
}
IntervalLogWriterError::IoError(e) => write!(f, "An i/o error occurred: {}", e),
}
}
}
impl<E: Error + 'static> Error for IntervalLogWriterError<E> {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
IntervalLogWriterError::SerializeError(e) => Some(e),
IntervalLogWriterError::IoError(e) => Some(e),
}
}
}
/// Write interval logs.
struct InternalLogWriter<'a, 'b, W: 'a + io::Write, S: 'b + Serializer> {
writer: &'a mut W,
serializer: &'b mut S,
text_buf: String,
serialize_buf: Vec<u8>,
max_value_divisor: f64,
}
impl<'a, 'b, W: 'a + io::Write, S: 'b + Serializer> InternalLogWriter<'a, 'b, W, S> {
fn write_fmt(&mut self, args: fmt::Arguments) -> io::Result<()> {
self.writer.write_fmt(args)
}
fn write_comment(&mut self, s: &str) -> io::Result<()> {
for l in s.split('\n') {
writeln!(self.writer, "#{}", l)?;
}
Ok(())
}
fn write_histogram<T: Counter>(
&mut self,
h: &Histogram<T>,
start_timestamp: time::Duration,
duration: time::Duration,
tag: Option<Tag>,
) -> Result<(), IntervalLogWriterError<S::SerializeError>> {
self.serialize_buf.clear();
self.text_buf.clear();
if let Some(Tag(s)) = tag {
write!(self.text_buf, "Tag={},", &s).expect("Writes to a String can't fail");
}
write!(
self.writer,
"{}{:.3},{:.3},{:.3},",
self.text_buf,
duration_as_fp_seconds(start_timestamp),
duration_as_fp_seconds(duration),
h.max() as f64 / self.max_value_divisor // because the Java impl does it this way
)?;
self.text_buf.clear();
let _len = self
.serializer
.serialize(h, &mut self.serialize_buf)
.map_err(IntervalLogWriterError::SerializeError)?;
base64::engine::general_purpose::STANDARD
.encode_string(&self.serialize_buf, &mut self.text_buf);
self.writer.write_all(self.text_buf.as_bytes())?;
self.writer.write_all(b"\n")?;
Ok(())
}
}
/// A tag for an interval histogram.
///
/// Tags are just `str`s that do not contain a few disallowed characters: ',', '\r', '\n', and ' '.
///
/// To get the wrapped `str` back out, use `as_str()` or the `Deref<str>` implementation
/// (`&some_tag`).
#[derive(Debug, PartialEq, Clone, Copy)]
pub struct Tag<'a>(&'a str);
impl<'a> Tag<'a> {
/// Create a new Tag.
///
/// If a disallowed character is present, this will return `None`.
pub fn new(s: &'a str) -> Option<Tag<'a>> {
if s.chars()
.any(|c| c == ',' || c == '\r' || c == '\n' || c == ' ')
{
None
} else {
Some(Tag(s))
}
}
/// Returns the tag contents as a str.
pub fn as_str(&self) -> &'a str {
self.0
}
}
impl<'a> ops::Deref for Tag<'a> {
type Target = str;
fn deref(&self) -> &Self::Target {
self.as_str()
}
}
/// An individual interval histogram parsed from an interval log.
#[derive(PartialEq, Debug)]
pub struct IntervalLogHistogram<'a> {
tag: Option<Tag<'a>>,
start_timestamp: time::Duration,
duration: time::Duration,
max: f64,
encoded_histogram: &'a str,
}
impl<'a> IntervalLogHistogram<'a> {
/// Tag, if any is present.
pub fn tag(&self) -> Option<Tag<'a>> {
self.tag
}
/// Timestamp of the start of the interval in seconds, expressed as a `Duration` relative to
/// some start point.
///
/// The timestamp may be absolute vs the epoch, or there may be a `StartTime` or `BaseTime` for
/// the log, in which case you may wish to consider this number as a delta vs those timestamps.
/// See the module-level documentation about timestamps.
pub fn start_timestamp(&self) -> time::Duration {
self.start_timestamp
}
/// Duration of the interval in seconds.
pub fn duration(&self) -> time::Duration {
self.duration
}
/// Max value in the encoded histogram
///
/// This max value is the max of the histogram divided by some scaling factor (which may be
/// 1.0).
pub fn max(&self) -> f64 {
self.max
}
/// Base64-encoded serialized histogram.
///
/// If you need the deserialized histogram, base64-decode and use a `Deserializer` on the
/// resulting bytes.
pub fn encoded_histogram(&self) -> &'a str {
self.encoded_histogram
}
}
#[derive(PartialEq, Debug)]
/// Represents one non-comment line in an interval log.
///
/// One thing to note is that the way your interval timestamps work can vary. If your log was
/// written with a StartTime or BaseTime, that metadata will appear in header comments, and that
/// will be represented by the iterator providing the corresponding variants here. The presence
/// of those timestamps will affect how you should interpret the timestamps for individual
/// intervals. See the module-level documentation.
#[allow(variant_size_differences)]
pub enum LogEntry<'a> {
/// Logs may include a StartTime. If present, it represents seconds since the epoch.
StartTime(time::Duration),
/// Logs may include a BaseTime. If present, it represents seconds since the epoch.
BaseTime(time::Duration),
/// An individual interval histogram.
Interval(IntervalLogHistogram<'a>),
}
/// Errors that occur when parsing an interval log.
#[derive(Debug, PartialEq)]
pub enum LogIteratorError {
/// Parsing failed
ParseError {
/// Offset in the input where the failed parse started
offset: usize,
},
}
/// Parse interval logs.
///
/// This iterator exposes each item (excluding comments and other information-free lines). See
/// `LogEntry`.
///
/// Because histogram deserialization is deferred, parsing logs is fast. See the `interval_log`
/// benchmark if you wish to see how it does on your hardware. As a baseline, parsing a log of 1000
/// random histograms of 10,000 values each takes 2ms total on an E5-1650v3.
///
/// Deferring deserialization is handy because it allows you to cheaply navigate the log to find
/// the records you care about (e.g. ones in a certain time range, or with a certain tag) without
/// doing all the allocation, etc, of deserialization.
///
/// If you're looking for a direct port of the Java impl's `HistogramLogReader`, this isn't one: it
/// won't deserialize for you, and it pushes the burden of figuring out what to do with StartTime,
/// BaseTime, etc to you, and there aren't built in functions to filter by timestamp. On the other
/// hand, because it doesn't do those things, it is much more flexible: you can easily build any
/// sort of filtering you want, not just timestamp ranges, because you have cheap access to all the
/// metadata before incurring the cost of deserialization. If you're not using any timestamp
/// headers, or at least using them in straightforward ways, it is easy to accumulate the
/// timestamp state you need. Since all the parsing is taken care of already, writing your own
/// `HistogramLogReader` equivalent that fits the way your logs are assembled is just a couple of
/// lines. (And if you're doing complex stuff, we probably wouldn't have built something that fits
/// your quirky logs anyway!)
///
/// This parses from a slice representing the complete file because it made implementation easier
/// (and also supports mmap'd files for maximum parsing speed). If parsing from a `Read` is
/// important for your use case, open an issue about it.
pub struct IntervalLogIterator<'a> {
orig_len: usize,
input: &'a [u8],
ended: bool,
}
impl<'a> IntervalLogIterator<'a> {
/// Create a new iterator from the UTF-8 bytes of an interval log.
pub fn new(input: &'a [u8]) -> IntervalLogIterator<'a> {
IntervalLogIterator {
orig_len: input.len(),
input,
ended: false,
}
}
}
impl<'a> Iterator for IntervalLogIterator<'a> {
type Item = Result<LogEntry<'a>, LogIteratorError>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.ended {
return None;
}
if self.input.is_empty() {
self.ended = true;
return None;
}
// Look for magic comments first otherwise they will get matched by the simple comment
// parser
if let Ok((rest, e)) = log_entry(self.input) {
self.input = rest;
return Some(Ok(e));
}
// it wasn't a log entry; try parsing a comment
match ignored_line(self.input) {
Ok((rest, _)) => {
self.input = rest;
continue;
}
_ => {
self.ended = true;
return Some(Err(LogIteratorError::ParseError {
offset: self.orig_len - self.input.len(),
}));
}
}
}
}
}
fn duration_as_fp_seconds(d: time::Duration) -> f64 {
d.as_secs() as f64 + f64::from(d.subsec_nanos()) / 1_000_000_000_f64
}
fn system_time_as_fp_seconds(time: time::SystemTime) -> f64 {
match time.duration_since(time::UNIX_EPOCH) {
Ok(dur_after_epoch) => duration_as_fp_seconds(dur_after_epoch),
// Doesn't seem possible to be before the epoch, but using a negative number seems like
// a reasonable representation if it does occur
Err(t) => duration_as_fp_seconds(t.duration()) * -1_f64,
}
}
fn start_time(input: &[u8]) -> IResult<&[u8], LogEntry> {
let (input, _) = tag("#[StartTime: ")(input)?;
let (input, duration) = fract_sec_duration(input)?;
let (input, _) = char(' ')(input)?;
let (input, _) = take_until("\n")(input)?;
let (input, _) = take(1_usize)(input)?;
Ok((input, LogEntry::StartTime(duration)))
}
fn base_time(input: &[u8]) -> IResult<&[u8], LogEntry> {
let (input, _) = tag("#[BaseTime: ")(input)?;
let (input, duration) = fract_sec_duration(input)?;
let (input, _) = char(' ')(input)?;
let (input, _) = take_until("\n")(input)?;
let (input, _) = take(1_usize)(input)?;
Ok((input, LogEntry::BaseTime(duration)))
}
fn tag_bytes(input: &[u8]) -> IResult<&[u8], &[u8]> {
let (input, _) = tag("Tag=")(input)?;
let (input, tag) = take_until(",")(input)?;
let (input, _) = take(1_usize)(input)?;
Ok((input, tag))
}
fn tag_parser(input: &[u8]) -> IResult<&[u8], Tag> {
let (input, tag) = map_res(tag_bytes, str::from_utf8)(input)?;
Ok((input, Tag(tag)))
}
fn interval_hist(input: &[u8]) -> IResult<&[u8], LogEntry> {
let (input, tag) = opt(tag_parser)(input)?;
let (input, start_timestamp) = fract_sec_duration(input)?;
let (input, _) = char(',')(input)?;
let (input, duration) = fract_sec_duration(input)?;
let (input, _) = char(',')(input)?;
let (input, max) = double(input)?;
let (input, _) = char(',')(input)?;
let (input, encoded_histogram) = map_res(take_until("\n"), str::from_utf8)(input)?;
// Be nice to Windows users:
let encoded_histogram = encoded_histogram.trim_end_matches('\r');
let (input, _) = take(1_usize)(input)?;
Ok((
input,
LogEntry::Interval(IntervalLogHistogram {
tag,
start_timestamp,
duration,
max,
encoded_histogram,
}),
))
}
fn log_entry(input: &[u8]) -> IResult<&[u8], LogEntry<'_>> {
complete(alt((start_time, base_time, interval_hist)))(input)
}
fn comment_line(input: &[u8]) -> IResult<&[u8], ()> {
let (input, _) = tag("#")(input)?;
let (input, _) = take_until("\n")(input)?;
let (input, _) = take(1_usize)(input)?;
Ok((input, ()))
}
fn legend(input: &[u8]) -> IResult<&[u8], ()> {
let (input, _) = tag("\"StartTimestamp\"")(input)?;
let (input, _) = take_until("\n")(input)?;
let (input, _) = take(1_usize)(input)?;
Ok((input, ()))
}
fn ignored_line(input: &[u8]) -> IResult<&[u8], ()> {
alt((comment_line, legend))(input)
}
fn fract_sec_duration(input: &[u8]) -> IResult<&[u8], time::Duration> {
let (rest, data) = fract_sec_tuple(input)?;
let (secs, nanos_str) = data;
// only read up to 9 digits since we can only support nanos, not smaller precision
let nanos_parse_res = match nanos_str.len().cmp(&9) {
Ordering::Greater => nanos_str[0..9].parse::<u32>(),
Ordering::Equal => nanos_str.parse::<u32>(),
Ordering::Less => nanos_str
.parse::<u32>()
// subtraction will not overflow because len is < 9
.map(|n| n * 10_u32.pow(9 - nanos_str.len() as u32)),
};
if let Ok(nanos) = nanos_parse_res {
return Ok((rest, time::Duration::new(secs, nanos)));
}
// nanos were invalid utf8. We don't expose these errors, so don't bother defining a
// custom error type.
Err(Err::Error(error_position!(input, ErrorKind::Alpha)))
}
type FResult<'a> = IResult<&'a [u8], (u64, &'a str)>;
fn fract_sec_tuple(input: &[u8]) -> FResult {
let (input, secs) = map_res(
map_res(recognize(take_until(".")), str::from_utf8),
u64::from_str,
)(input)?;
let (input, _) = tag(".")(input)?;
let (input, nanos_str) = map_res(complete(take_while1(is_digit)), str::from_utf8)(input)?;
Ok((input, (secs, nanos_str)))
}
#[cfg(test)]
mod tests;