1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* origin: FreeBSD /usr/src/lib/msun/src/e_asinf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
use super::fabsf::fabsf;
use super::sqrt::sqrt;
const PIO2: f64 = 1.570796326794896558e+00;
/* coefficients for R(x^2) */
const P_S0: f32 = 1.6666586697e-01;
const P_S1: f32 = -4.2743422091e-02;
const P_S2: f32 = -8.6563630030e-03;
const Q_S1: f32 = -7.0662963390e-01;
fn r(z: f32) -> f32 {
let p = z * (P_S0 + z * (P_S1 + z * P_S2));
let q = 1. + z * Q_S1;
p / q
}
/// Arcsine (f32)
///
/// Computes the inverse sine (arc sine) of the argument `x`.
/// Arguments to asin must be in the range -1 to 1.
/// Returns values in radians, in the range of -pi/2 to pi/2.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn asinf(mut x: f32) -> f32 {
let x1p_120 = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ (-120)
let hx = x.to_bits();
let ix = hx & 0x7fffffff;
if ix >= 0x3f800000 {
/* |x| >= 1 */
if ix == 0x3f800000 {
/* |x| == 1 */
return ((x as f64) * PIO2 + x1p_120) as f32; /* asin(+-1) = +-pi/2 with inexact */
}
return 0. / (x - x); /* asin(|x|>1) is NaN */
}
if ix < 0x3f000000 {
/* |x| < 0.5 */
/* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
if (ix < 0x39800000) && (ix >= 0x00800000) {
return x;
}
return x + x * r(x * x);
}
/* 1 > |x| >= 0.5 */
let z = (1. - fabsf(x)) * 0.5;
let s = sqrt(z as f64);
x = (PIO2 - 2. * (s + s * (r(z) as f64))) as f32;
if (hx >> 31) != 0 {
-x
} else {
x
}
}