1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#![allow(unreachable_code)]
use core::f64;
const TOINT: f64 = 1. / f64::EPSILON;
/// Floor (f64)
///
/// Finds the nearest integer less than or equal to `x`.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn floor(x: f64) -> f64 {
// On wasm32 we know that LLVM's intrinsic will compile to an optimized
// `f64.floor` native instruction, so we can leverage this for both code size
// and speed.
llvm_intrinsically_optimized! {
#[cfg(target_arch = "wasm32")] {
return unsafe { ::core::intrinsics::floorf64(x) }
}
}
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
{
//use an alternative implementation on x86, because the
//main implementation fails with the x87 FPU used by
//debian i386, probablly due to excess precision issues.
//basic implementation taken from https://github.com/rust-lang/libm/issues/219
use super::fabs;
if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() {
let truncated = x as i64 as f64;
if truncated > x {
return truncated - 1.0;
} else {
return truncated;
}
} else {
return x;
}
}
let ui = x.to_bits();
let e = ((ui >> 52) & 0x7ff) as i32;
if (e >= 0x3ff + 52) || (x == 0.) {
return x;
}
/* y = int(x) - x, where int(x) is an integer neighbor of x */
let y = if (ui >> 63) != 0 {
x - TOINT + TOINT - x
} else {
x + TOINT - TOINT - x
};
/* special case because of non-nearest rounding modes */
if e < 0x3ff {
force_eval!(y);
return if (ui >> 63) != 0 { -1. } else { 0. };
}
if y > 0. {
x + y - 1.
} else {
x + y
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::f64::*;
#[test]
fn sanity_check() {
assert_eq!(floor(1.1), 1.0);
assert_eq!(floor(2.9), 2.0);
}
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/floor
#[test]
fn spec_tests() {
// Not Asserted: that the current rounding mode has no effect.
assert!(floor(NAN).is_nan());
for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() {
assert_eq!(floor(f), f);
}
}
}