1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
use core::{f32, f64};
use super::scalbn;
const ZEROINFNAN: i32 = 0x7ff - 0x3ff - 52 - 1;
struct Num {
m: u64,
e: i32,
sign: i32,
}
fn normalize(x: f64) -> Num {
let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
let mut ix: u64 = x.to_bits();
let mut e: i32 = (ix >> 52) as i32;
let sign: i32 = e & 0x800;
e &= 0x7ff;
if e == 0 {
ix = (x * x1p63).to_bits();
e = (ix >> 52) as i32 & 0x7ff;
e = if e != 0 { e - 63 } else { 0x800 };
}
ix &= (1 << 52) - 1;
ix |= 1 << 52;
ix <<= 1;
e -= 0x3ff + 52 + 1;
Num { m: ix, e, sign }
}
#[inline]
fn mul(x: u64, y: u64) -> (u64, u64) {
let t = (x as u128).wrapping_mul(y as u128);
((t >> 64) as u64, t as u64)
}
/// Floating multiply add (f64)
///
/// Computes `(x*y)+z`, rounded as one ternary operation:
/// Computes the value (as if) to infinite precision and rounds once to the result format,
/// according to the rounding mode characterized by the value of FLT_ROUNDS.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn fma(x: f64, y: f64, z: f64) -> f64 {
let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
let x0_ffffff8p_63 = f64::from_bits(0x3bfffffff0000000); // 0x0.ffffff8p-63
/* normalize so top 10bits and last bit are 0 */
let nx = normalize(x);
let ny = normalize(y);
let nz = normalize(z);
if nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN {
return x * y + z;
}
if nz.e >= ZEROINFNAN {
if nz.e > ZEROINFNAN {
/* z==0 */
return x * y + z;
}
return z;
}
/* mul: r = x*y */
let zhi: u64;
let zlo: u64;
let (mut rhi, mut rlo) = mul(nx.m, ny.m);
/* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
/* align exponents */
let mut e: i32 = nx.e + ny.e;
let mut d: i32 = nz.e - e;
/* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
if d > 0 {
if d < 64 {
zlo = nz.m << d;
zhi = nz.m >> (64 - d);
} else {
zlo = 0;
zhi = nz.m;
e = nz.e - 64;
d -= 64;
if d == 0 {
} else if d < 64 {
rlo = rhi << (64 - d) | rlo >> d | ((rlo << (64 - d)) != 0) as u64;
rhi = rhi >> d;
} else {
rlo = 1;
rhi = 0;
}
}
} else {
zhi = 0;
d = -d;
if d == 0 {
zlo = nz.m;
} else if d < 64 {
zlo = nz.m >> d | ((nz.m << (64 - d)) != 0) as u64;
} else {
zlo = 1;
}
}
/* add */
let mut sign: i32 = nx.sign ^ ny.sign;
let samesign: bool = (sign ^ nz.sign) == 0;
let mut nonzero: i32 = 1;
if samesign {
/* r += z */
rlo = rlo.wrapping_add(zlo);
rhi += zhi + (rlo < zlo) as u64;
} else {
/* r -= z */
let (res, borrow) = rlo.overflowing_sub(zlo);
rlo = res;
rhi = rhi.wrapping_sub(zhi.wrapping_add(borrow as u64));
if (rhi >> 63) != 0 {
rlo = (rlo as i64).wrapping_neg() as u64;
rhi = (rhi as i64).wrapping_neg() as u64 - (rlo != 0) as u64;
sign = (sign == 0) as i32;
}
nonzero = (rhi != 0) as i32;
}
/* set rhi to top 63bit of the result (last bit is sticky) */
if nonzero != 0 {
e += 64;
d = rhi.leading_zeros() as i32 - 1;
/* note: d > 0 */
rhi = rhi << d | rlo >> (64 - d) | ((rlo << d) != 0) as u64;
} else if rlo != 0 {
d = rlo.leading_zeros() as i32 - 1;
if d < 0 {
rhi = rlo >> 1 | (rlo & 1);
} else {
rhi = rlo << d;
}
} else {
/* exact +-0 */
return x * y + z;
}
e -= d;
/* convert to double */
let mut i: i64 = rhi as i64; /* i is in [1<<62,(1<<63)-1] */
if sign != 0 {
i = -i;
}
let mut r: f64 = i as f64; /* |r| is in [0x1p62,0x1p63] */
if e < -1022 - 62 {
/* result is subnormal before rounding */
if e == -1022 - 63 {
let mut c: f64 = x1p63;
if sign != 0 {
c = -c;
}
if r == c {
/* min normal after rounding, underflow depends
on arch behaviour which can be imitated by
a double to float conversion */
let fltmin: f32 = (x0_ffffff8p_63 * f32::MIN_POSITIVE as f64 * r) as f32;
return f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * fltmin as f64;
}
/* one bit is lost when scaled, add another top bit to
only round once at conversion if it is inexact */
if (rhi << 53) != 0 {
i = (rhi >> 1 | (rhi & 1) | 1 << 62) as i64;
if sign != 0 {
i = -i;
}
r = i as f64;
r = 2. * r - c; /* remove top bit */
/* raise underflow portably, such that it
cannot be optimized away */
{
let tiny: f64 = f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * r;
r += (tiny * tiny) * (r - r);
}
}
} else {
/* only round once when scaled */
d = 10;
i = ((rhi >> d | ((rhi << (64 - d)) != 0) as u64) << d) as i64;
if sign != 0 {
i = -i;
}
r = i as f64;
}
}
scalbn(r, e)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn fma_segfault() {
// These two inputs cause fma to segfault on release due to overflow:
assert_eq!(
fma(
-0.0000000000000002220446049250313,
-0.0000000000000002220446049250313,
-0.0000000000000002220446049250313
),
-0.00000000000000022204460492503126,
);
let result = fma(-0.992, -0.992, -0.992);
//force rounding to storage format on x87 to prevent superious errors.
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
let result = force_eval!(result);
assert_eq!(result, -0.007936000000000007,);
}
#[test]
fn fma_sbb() {
assert_eq!(
fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN),
-3991680619069439e277
);
}
#[test]
fn fma_underflow() {
assert_eq!(
fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320),
0.0,
);
}
}