1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* lgamma_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method:
* 1. Argument Reduction for 0 < x <= 8
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
* reduce x to a number in [1.5,2.5] by
* lgamma(1+s) = log(s) + lgamma(s)
* for example,
* lgamma(7.3) = log(6.3) + lgamma(6.3)
* = log(6.3*5.3) + lgamma(5.3)
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
* 2. Polynomial approximation of lgamma around its
* minimun ymin=1.461632144968362245 to maintain monotonicity.
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
* Let z = x-ymin;
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
* where
* poly(z) is a 14 degree polynomial.
* 2. Rational approximation in the primary interval [2,3]
* We use the following approximation:
* s = x-2.0;
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
* with accuracy
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
* Our algorithms are based on the following observation
*
* zeta(2)-1 2 zeta(3)-1 3
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
* 2 3
*
* where Euler = 0.5771... is the Euler constant, which is very
* close to 0.5.
*
* 3. For x>=8, we have
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
* (better formula:
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
* Let z = 1/x, then we approximation
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
* by
* 3 5 11
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
* where
* |w - f(z)| < 2**-58.74
*
* 4. For negative x, since (G is gamma function)
* -x*G(-x)*G(x) = PI/sin(PI*x),
* we have
* G(x) = PI/(sin(PI*x)*(-x)*G(-x))
* since G(-x) is positive, sign(G(x)) = sign(sin(PI*x)) for x<0
* Hence, for x<0, signgam = sign(sin(PI*x)) and
* lgamma(x) = log(|Gamma(x)|)
* = log(PI/(|x*sin(PI*x)|)) - lgamma(-x);
* Note: one should avoid compute PI*(-x) directly in the
* computation of sin(PI*(-x)).
*
* 5. Special Cases
* lgamma(2+s) ~ s*(1-Euler) for tiny s
* lgamma(1) = lgamma(2) = 0
* lgamma(x) ~ -log(|x|) for tiny x
* lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
* lgamma(inf) = inf
* lgamma(-inf) = inf (bug for bug compatible with C99!?)
*
*/
use super::{floor, k_cos, k_sin, log};
const PI: f64 = 3.14159265358979311600e+00; /* 0x400921FB, 0x54442D18 */
const A0: f64 = 7.72156649015328655494e-02; /* 0x3FB3C467, 0xE37DB0C8 */
const A1: f64 = 3.22467033424113591611e-01; /* 0x3FD4A34C, 0xC4A60FAD */
const A2: f64 = 6.73523010531292681824e-02; /* 0x3FB13E00, 0x1A5562A7 */
const A3: f64 = 2.05808084325167332806e-02; /* 0x3F951322, 0xAC92547B */
const A4: f64 = 7.38555086081402883957e-03; /* 0x3F7E404F, 0xB68FEFE8 */
const A5: f64 = 2.89051383673415629091e-03; /* 0x3F67ADD8, 0xCCB7926B */
const A6: f64 = 1.19270763183362067845e-03; /* 0x3F538A94, 0x116F3F5D */
const A7: f64 = 5.10069792153511336608e-04; /* 0x3F40B6C6, 0x89B99C00 */
const A8: f64 = 2.20862790713908385557e-04; /* 0x3F2CF2EC, 0xED10E54D */
const A9: f64 = 1.08011567247583939954e-04; /* 0x3F1C5088, 0x987DFB07 */
const A10: f64 = 2.52144565451257326939e-05; /* 0x3EFA7074, 0x428CFA52 */
const A11: f64 = 4.48640949618915160150e-05; /* 0x3F07858E, 0x90A45837 */
const TC: f64 = 1.46163214496836224576e+00; /* 0x3FF762D8, 0x6356BE3F */
const TF: f64 = -1.21486290535849611461e-01; /* 0xBFBF19B9, 0xBCC38A42 */
/* tt = -(tail of TF) */
const TT: f64 = -3.63867699703950536541e-18; /* 0xBC50C7CA, 0xA48A971F */
const T0: f64 = 4.83836122723810047042e-01; /* 0x3FDEF72B, 0xC8EE38A2 */
const T1: f64 = -1.47587722994593911752e-01; /* 0xBFC2E427, 0x8DC6C509 */
const T2: f64 = 6.46249402391333854778e-02; /* 0x3FB08B42, 0x94D5419B */
const T3: f64 = -3.27885410759859649565e-02; /* 0xBFA0C9A8, 0xDF35B713 */
const T4: f64 = 1.79706750811820387126e-02; /* 0x3F9266E7, 0x970AF9EC */
const T5: f64 = -1.03142241298341437450e-02; /* 0xBF851F9F, 0xBA91EC6A */
const T6: f64 = 6.10053870246291332635e-03; /* 0x3F78FCE0, 0xE370E344 */
const T7: f64 = -3.68452016781138256760e-03; /* 0xBF6E2EFF, 0xB3E914D7 */
const T8: f64 = 2.25964780900612472250e-03; /* 0x3F6282D3, 0x2E15C915 */
const T9: f64 = -1.40346469989232843813e-03; /* 0xBF56FE8E, 0xBF2D1AF1 */
const T10: f64 = 8.81081882437654011382e-04; /* 0x3F4CDF0C, 0xEF61A8E9 */
const T11: f64 = -5.38595305356740546715e-04; /* 0xBF41A610, 0x9C73E0EC */
const T12: f64 = 3.15632070903625950361e-04; /* 0x3F34AF6D, 0x6C0EBBF7 */
const T13: f64 = -3.12754168375120860518e-04; /* 0xBF347F24, 0xECC38C38 */
const T14: f64 = 3.35529192635519073543e-04; /* 0x3F35FD3E, 0xE8C2D3F4 */
const U0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
const U1: f64 = 6.32827064025093366517e-01; /* 0x3FE4401E, 0x8B005DFF */
const U2: f64 = 1.45492250137234768737e+00; /* 0x3FF7475C, 0xD119BD6F */
const U3: f64 = 9.77717527963372745603e-01; /* 0x3FEF4976, 0x44EA8450 */
const U4: f64 = 2.28963728064692451092e-01; /* 0x3FCD4EAE, 0xF6010924 */
const U5: f64 = 1.33810918536787660377e-02; /* 0x3F8B678B, 0xBF2BAB09 */
const V1: f64 = 2.45597793713041134822e+00; /* 0x4003A5D7, 0xC2BD619C */
const V2: f64 = 2.12848976379893395361e+00; /* 0x40010725, 0xA42B18F5 */
const V3: f64 = 7.69285150456672783825e-01; /* 0x3FE89DFB, 0xE45050AF */
const V4: f64 = 1.04222645593369134254e-01; /* 0x3FBAAE55, 0xD6537C88 */
const V5: f64 = 3.21709242282423911810e-03; /* 0x3F6A5ABB, 0x57D0CF61 */
const S0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
const S1: f64 = 2.14982415960608852501e-01; /* 0x3FCB848B, 0x36E20878 */
const S2: f64 = 3.25778796408930981787e-01; /* 0x3FD4D98F, 0x4F139F59 */
const S3: f64 = 1.46350472652464452805e-01; /* 0x3FC2BB9C, 0xBEE5F2F7 */
const S4: f64 = 2.66422703033638609560e-02; /* 0x3F9B481C, 0x7E939961 */
const S5: f64 = 1.84028451407337715652e-03; /* 0x3F5E26B6, 0x7368F239 */
const S6: f64 = 3.19475326584100867617e-05; /* 0x3F00BFEC, 0xDD17E945 */
const R1: f64 = 1.39200533467621045958e+00; /* 0x3FF645A7, 0x62C4AB74 */
const R2: f64 = 7.21935547567138069525e-01; /* 0x3FE71A18, 0x93D3DCDC */
const R3: f64 = 1.71933865632803078993e-01; /* 0x3FC601ED, 0xCCFBDF27 */
const R4: f64 = 1.86459191715652901344e-02; /* 0x3F9317EA, 0x742ED475 */
const R5: f64 = 7.77942496381893596434e-04; /* 0x3F497DDA, 0xCA41A95B */
const R6: f64 = 7.32668430744625636189e-06; /* 0x3EDEBAF7, 0xA5B38140 */
const W0: f64 = 4.18938533204672725052e-01; /* 0x3FDACFE3, 0x90C97D69 */
const W1: f64 = 8.33333333333329678849e-02; /* 0x3FB55555, 0x5555553B */
const W2: f64 = -2.77777777728775536470e-03; /* 0xBF66C16C, 0x16B02E5C */
const W3: f64 = 7.93650558643019558500e-04; /* 0x3F4A019F, 0x98CF38B6 */
const W4: f64 = -5.95187557450339963135e-04; /* 0xBF4380CB, 0x8C0FE741 */
const W5: f64 = 8.36339918996282139126e-04; /* 0x3F4B67BA, 0x4CDAD5D1 */
const W6: f64 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */
fn sin_pi(mut x: f64) -> f64 {
let mut n: i32;
/* spurious inexact if odd int */
x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */
n = (x * 4.0) as i32;
n = div!(n + 1, 2);
x -= (n as f64) * 0.5;
x *= PI;
match n {
1 => k_cos(x, 0.0),
2 => k_sin(-x, 0.0, 0),
3 => -k_cos(x, 0.0),
0 | _ => k_sin(x, 0.0, 0),
}
}
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn lgamma_r(mut x: f64) -> (f64, i32) {
let u: u64 = x.to_bits();
let mut t: f64;
let y: f64;
let mut z: f64;
let nadj: f64;
let p: f64;
let p1: f64;
let p2: f64;
let p3: f64;
let q: f64;
let mut r: f64;
let w: f64;
let ix: u32;
let sign: bool;
let i: i32;
let mut signgam: i32;
/* purge off +-inf, NaN, +-0, tiny and negative arguments */
signgam = 1;
sign = (u >> 63) != 0;
ix = ((u >> 32) as u32) & 0x7fffffff;
if ix >= 0x7ff00000 {
return (x * x, signgam);
}
if ix < (0x3ff - 70) << 20 {
/* |x|<2**-70, return -log(|x|) */
if sign {
x = -x;
signgam = -1;
}
return (-log(x), signgam);
}
if sign {
x = -x;
t = sin_pi(x);
if t == 0.0 {
/* -integer */
return (1.0 / (x - x), signgam);
}
if t > 0.0 {
signgam = -1;
} else {
t = -t;
}
nadj = log(PI / (t * x));
} else {
nadj = 0.0;
}
/* purge off 1 and 2 */
if (ix == 0x3ff00000 || ix == 0x40000000) && (u & 0xffffffff) == 0 {
r = 0.0;
}
/* for x < 2.0 */
else if ix < 0x40000000 {
if ix <= 0x3feccccc {
/* lgamma(x) = lgamma(x+1)-log(x) */
r = -log(x);
if ix >= 0x3FE76944 {
y = 1.0 - x;
i = 0;
} else if ix >= 0x3FCDA661 {
y = x - (TC - 1.0);
i = 1;
} else {
y = x;
i = 2;
}
} else {
r = 0.0;
if ix >= 0x3FFBB4C3 {
/* [1.7316,2] */
y = 2.0 - x;
i = 0;
} else if ix >= 0x3FF3B4C4 {
/* [1.23,1.73] */
y = x - TC;
i = 1;
} else {
y = x - 1.0;
i = 2;
}
}
match i {
0 => {
z = y * y;
p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10))));
p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11)))));
p = y * p1 + p2;
r += p - 0.5 * y;
}
1 => {
z = y * y;
w = z * y;
p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */
p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13)));
p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14)));
p = z * p1 - (TT - w * (p2 + y * p3));
r += TF + p;
}
2 => {
p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5)))));
p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5))));
r += -0.5 * y + p1 / p2;
}
#[cfg(debug_assertions)]
_ => unreachable!(),
#[cfg(not(debug_assertions))]
_ => {}
}
} else if ix < 0x40200000 {
/* x < 8.0 */
i = x as i32;
y = x - (i as f64);
p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6))))));
q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6)))));
r = 0.5 * y + p / q;
z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
// TODO: In C, this was implemented using switch jumps with fallthrough.
// Does this implementation have performance problems?
if i >= 7 {
z *= y + 6.0;
}
if i >= 6 {
z *= y + 5.0;
}
if i >= 5 {
z *= y + 4.0;
}
if i >= 4 {
z *= y + 3.0;
}
if i >= 3 {
z *= y + 2.0;
r += log(z);
}
} else if ix < 0x43900000 {
/* 8.0 <= x < 2**58 */
t = log(x);
z = 1.0 / x;
y = z * z;
w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6)))));
r = (x - 0.5) * (t - 1.0) + w;
} else {
/* 2**58 <= x <= inf */
r = x * (log(x) - 1.0);
}
if sign {
r = nadj - r;
}
return (r, signgam);
}