1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
//! The block decompression algorithm.
use crate::block::DecompressError;
use crate::block::MINMATCH;
use crate::sink::Sink;
use crate::sink::SliceSink;
#[allow(unused_imports)]
use alloc::vec;
#[allow(unused_imports)]
use alloc::vec::Vec;
/// Read an integer.
///
/// In LZ4, we encode small integers in a way that we can have an arbitrary number of bytes. In
/// particular, we add the bytes repeatedly until we hit a non-0xFF byte. When we do, we add
/// this byte to our sum and terminate the loop.
///
/// # Example
///
/// ```notest
/// 255, 255, 255, 4, 2, 3, 4, 6, 7
/// ```
///
/// is encoded to _255 + 255 + 255 + 4 = 769_. The bytes after the first 4 is ignored, because
/// 4 is the first non-0xFF byte.
#[inline]
fn read_integer(input: &[u8], input_pos: &mut usize) -> Result<u32, DecompressError> {
// We start at zero and count upwards.
let mut n: u32 = 0;
// If this byte takes value 255 (the maximum value it can take), another byte is read
// and added to the sum. This repeats until a byte lower than 255 is read.
loop {
// We add the next byte until we get a byte which we add to the counting variable.
let extra: u8 = *input
.get(*input_pos)
.ok_or(DecompressError::ExpectedAnotherByte)?;
*input_pos += 1;
n += extra as u32;
// We continue if we got 255, break otherwise.
if extra != 0xFF {
break;
}
}
// 255, 255, 255, 8
// 111, 111, 111, 101
Ok(n)
}
/// Read a little-endian 16-bit integer from the input stream.
#[inline]
fn read_u16(input: &[u8], input_pos: &mut usize) -> Result<u16, DecompressError> {
let dst = input
.get(*input_pos..*input_pos + 2)
.ok_or(DecompressError::ExpectedAnotherByte)?;
*input_pos += 2;
Ok(u16::from_le_bytes(dst.try_into().unwrap()))
}
const FIT_TOKEN_MASK_LITERAL: u8 = 0b00001111;
const FIT_TOKEN_MASK_MATCH: u8 = 0b11110000;
#[test]
fn check_token() {
assert!(!does_token_fit(15));
assert!(does_token_fit(14));
assert!(does_token_fit(114));
assert!(!does_token_fit(0b11110000));
assert!(does_token_fit(0b10110000));
}
/// The token consists of two parts, the literal length (upper 4 bits) and match_length (lower 4
/// bits) if the literal length and match_length are both below 15, we don't need to read additional
/// data, so the token does fit the metadata.
#[inline]
fn does_token_fit(token: u8) -> bool {
!((token & FIT_TOKEN_MASK_LITERAL) == FIT_TOKEN_MASK_LITERAL
|| (token & FIT_TOKEN_MASK_MATCH) == FIT_TOKEN_MASK_MATCH)
}
/// Decompress all bytes of `input` into `output`.
///
/// Returns the number of bytes written (decompressed) into `output`.
#[inline(always)] // (always) necessary to get the best performance in non LTO builds
pub(crate) fn decompress_internal<const USE_DICT: bool, S: Sink>(
input: &[u8],
output: &mut S,
ext_dict: &[u8],
) -> Result<usize, DecompressError> {
let mut input_pos = 0;
let initial_output_pos = output.pos();
let safe_input_pos = input
.len()
.saturating_sub(16 /* literal copy */ + 2 /* u16 match offset */);
let mut safe_output_pos = output
.capacity()
.saturating_sub(16 /* literal copy */ + 18 /* match copy */);
if USE_DICT {
// In the dictionary case the output pointer is moved by the match length in the dictionary.
// This may be up to 17 bytes without exiting the loop. So we need to ensure that we have
// at least additional 17 bytes of space left in the output buffer in the fast loop.
safe_output_pos = safe_output_pos.saturating_sub(17);
};
// Exhaust the decoder by reading and decompressing all blocks until the remaining buffer is
// empty.
loop {
// Read the token. The token is the first byte in a block. It is divided into two 4-bit
// subtokens, the higher and the lower.
// This token contains to 4-bit "fields", a higher and a lower, representing the literals'
// length and the back reference's length, respectively.
let token = *input
.get(input_pos)
.ok_or(DecompressError::ExpectedAnotherByte)?;
input_pos += 1;
// Checking for hot-loop.
// In most cases the metadata does fit in a single 1byte token (statistically) and we are in
// a safe-distance to the end. This enables some optimized handling.
//
// Ideally we want to check for safe output pos like: output.pos() <= safe_output_pos; But
// that doesn't work when the safe_output_pos is 0 due to saturated_sub. So we use
// `<` instead of `<=`, which covers that case.
if does_token_fit(token) && input_pos <= safe_input_pos && output.pos() < safe_output_pos {
let literal_length = (token >> 4) as usize;
// casting to [u8;u16] doesn't seem to make a difference vs &[u8] (same assembly)
let input: &[u8; 16] = input[input_pos..input_pos + 16].try_into().unwrap();
// Copy the literal
// The literal is at max 14 bytes, and the is_safe_distance check assures
// that we are far away enough from the end so we can safely copy 16 bytes
output.extend_from_slice_wild(input, literal_length);
input_pos += literal_length;
// clone as we don't want to mutate
let offset = read_u16(input, &mut literal_length.clone())? as usize;
input_pos += 2;
let mut match_length = MINMATCH + (token & 0xF) as usize;
if USE_DICT && offset > output.pos() {
let copied = copy_from_dict(output, ext_dict, offset, match_length)?;
if copied == match_length {
continue;
}
// match crosses ext_dict and output, offset is still correct as output pos
// increased
match_length -= copied;
}
// In this branch we know that match_length is at most 18 (14 + MINMATCH).
// But the blocks can overlap, so make sure they are at least 18 bytes apart
// to enable an optimized copy of 18 bytes.
let start = output.pos().saturating_sub(offset);
if offset >= match_length {
output.extend_from_within(start, 18, match_length);
} else {
output.extend_from_within_overlapping(start, match_length)
}
continue;
}
// Now, we read the literals section.
// Literal Section
// If the initial value is 15, it is indicated that another byte will be read and added to
// it
let mut literal_length = (token >> 4) as usize;
if literal_length != 0 {
if literal_length == 15 {
// The literal_length length took the maximal value, indicating that there is more
// than 15 literal_length bytes. We read the extra integer.
literal_length += read_integer(input, &mut input_pos)? as usize;
}
if literal_length > input.len() - input_pos {
return Err(DecompressError::LiteralOutOfBounds);
}
#[cfg(not(feature = "unchecked-decode"))]
if literal_length > output.capacity() - output.pos() {
return Err(DecompressError::OutputTooSmall {
expected: output.pos() + literal_length,
actual: output.capacity(),
});
}
output.extend_from_slice(&input[input_pos..input_pos + literal_length]);
input_pos += literal_length;
}
// If the input stream is emptied, we break out of the loop. This is only the case
// in the end of the stream, since the block is intact otherwise.
if input_pos >= input.len() {
break;
}
let offset = read_u16(input, &mut input_pos)? as usize;
// Obtain the initial match length. The match length is the length of the duplicate segment
// which will later be copied from data previously decompressed into the output buffer. The
// initial length is derived from the second part of the token (the lower nibble), we read
// earlier. Since having a match length of less than 4 would mean negative compression
// ratio, we start at 4 (MINMATCH).
// The initial match length can maximally be 19. As with the literal length, this indicates
// that there are more bytes to read.
let mut match_length = MINMATCH + (token & 0xF) as usize;
if match_length == MINMATCH + 15 {
// The match length took the maximal value, indicating that there is more bytes. We
// read the extra integer.
match_length += read_integer(input, &mut input_pos)? as usize;
}
#[cfg(not(feature = "unchecked-decode"))]
if output.pos() + match_length > output.capacity() {
return Err(DecompressError::OutputTooSmall {
expected: output.pos() + match_length,
actual: output.capacity(),
});
}
if USE_DICT && offset > output.pos() {
let copied = copy_from_dict(output, ext_dict, offset, match_length)?;
if copied == match_length {
continue;
}
// match crosses ext_dict and output, offset is still correct as output_len was
// increased
match_length -= copied;
}
// We now copy from the already decompressed buffer. This allows us for storing duplicates
// by simply referencing the other location.
duplicate_slice(output, offset, match_length)?;
}
Ok(output.pos() - initial_output_pos)
}
#[inline]
fn copy_from_dict(
output: &mut impl Sink,
ext_dict: &[u8],
offset: usize,
match_length: usize,
) -> Result<usize, DecompressError> {
// If we're here we know offset > output.pos
debug_assert!(offset > output.pos());
let (dict_offset, did_overflow) = ext_dict.len().overflowing_sub(offset - output.pos());
if did_overflow {
return Err(DecompressError::OffsetOutOfBounds);
}
// Can't copy past ext_dict len, the match may cross dict and output
let dict_match_length = match_length.min(ext_dict.len() - dict_offset);
let ext_match = &ext_dict[dict_offset..dict_offset + dict_match_length];
output.extend_from_slice(ext_match);
Ok(dict_match_length)
}
/// Extends output by self-referential copies
#[inline(always)] // (always) necessary otherwise compiler fails to inline it
fn duplicate_slice(
output: &mut impl Sink,
offset: usize,
match_length: usize,
) -> Result<(), DecompressError> {
// This function assumes output will fit match_length, it might panic otherwise.
if match_length > offset {
duplicate_overlapping_slice(output, offset, match_length)?;
} else {
let (start, did_overflow) = output.pos().overflowing_sub(offset);
if did_overflow {
return Err(DecompressError::OffsetOutOfBounds);
}
match match_length {
0..=32 if output.pos() + 32 <= output.capacity() => {
output.extend_from_within(start, 32, match_length)
}
33..=64 if output.pos() + 64 <= output.capacity() => {
output.extend_from_within(start, 64, match_length)
}
_ => output.extend_from_within(start, match_length, match_length),
}
}
Ok(())
}
/// self-referential copy for the case data start (end of output - offset) + match_length overlaps
/// into output
#[inline]
fn duplicate_overlapping_slice(
sink: &mut impl Sink,
offset: usize,
match_length: usize,
) -> Result<(), DecompressError> {
// This function assumes output will fit match_length, it might panic otherwise.
let (start, did_overflow) = sink.pos().overflowing_sub(offset);
if did_overflow {
return Err(DecompressError::OffsetOutOfBounds);
}
if offset == 1 {
let val = sink.byte_at(start);
sink.extend_with_fill(val, match_length);
} else {
sink.extend_from_within_overlapping(start, match_length);
}
Ok(())
}
/// Decompress all bytes of `input` into `output`.
/// `output` should be preallocated with a size of of the uncompressed data.
#[inline]
pub fn decompress_into(input: &[u8], output: &mut [u8]) -> Result<usize, DecompressError> {
decompress_internal::<false, _>(input, &mut SliceSink::new(output, 0), b"")
}
/// Decompress all bytes of `input` into `output`.
///
/// Returns the number of bytes written (decompressed) into `output`.
#[inline]
pub fn decompress_into_with_dict(
input: &[u8],
output: &mut [u8],
ext_dict: &[u8],
) -> Result<usize, DecompressError> {
decompress_internal::<true, _>(input, &mut SliceSink::new(output, 0), ext_dict)
}
/// Decompress all bytes of `input` into a new vec. The first 4 bytes are the uncompressed size in
/// litte endian. Can be used in conjunction with `compress_prepend_size`
#[inline]
pub fn decompress_size_prepended(input: &[u8]) -> Result<Vec<u8>, DecompressError> {
let (uncompressed_size, input) = super::uncompressed_size(input)?;
decompress(input, uncompressed_size)
}
/// Decompress all bytes of `input` into a new vec.
/// The passed parameter `min_uncompressed_size` needs to be equal or larger than the uncompressed size.
///
/// # Panics
/// May panic if the parameter `min_uncompressed_size` is smaller than the
/// uncompressed data.
#[inline]
pub fn decompress(input: &[u8], min_uncompressed_size: usize) -> Result<Vec<u8>, DecompressError> {
let mut decompressed: Vec<u8> = vec![0; min_uncompressed_size];
let decomp_len =
decompress_internal::<false, _>(input, &mut SliceSink::new(&mut decompressed, 0), b"")?;
decompressed.truncate(decomp_len);
Ok(decompressed)
}
/// Decompress all bytes of `input` into a new vec. The first 4 bytes are the uncompressed size in
/// little endian. Can be used in conjunction with `compress_prepend_size_with_dict`
#[inline]
pub fn decompress_size_prepended_with_dict(
input: &[u8],
ext_dict: &[u8],
) -> Result<Vec<u8>, DecompressError> {
let (uncompressed_size, input) = super::uncompressed_size(input)?;
decompress_with_dict(input, uncompressed_size, ext_dict)
}
/// Decompress all bytes of `input` into a new vec.
/// The passed parameter `min_uncompressed_size` needs to be equal or larger than the uncompressed size.
///
/// # Panics
/// May panic if the parameter `min_uncompressed_size` is smaller than the
/// uncompressed data.
#[inline]
pub fn decompress_with_dict(
input: &[u8],
min_uncompressed_size: usize,
ext_dict: &[u8],
) -> Result<Vec<u8>, DecompressError> {
let mut decompressed: Vec<u8> = vec![0; min_uncompressed_size];
let decomp_len =
decompress_internal::<true, _>(input, &mut SliceSink::new(&mut decompressed, 0), ext_dict)?;
decompressed.truncate(decomp_len);
Ok(decompressed)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn all_literal() {
assert_eq!(decompress(&[0x30, b'a', b'4', b'9'], 3).unwrap(), b"a49");
}
// this error test is only valid in safe-decode.
#[cfg(feature = "safe-decode")]
#[test]
fn offset_oob() {
decompress(&[0x10, b'a', 2, 0], 4).unwrap_err();
decompress(&[0x40, b'a', 1, 0], 4).unwrap_err();
}
}