1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
//! Create master and slave virtual pseudo-terminals (PTYs)
pub use libc::pid_t as SessionId;
pub use libc::winsize as Winsize;
use std::ffi::CStr;
use std::io;
use std::mem;
use std::os::unix::prelude::*;
use crate::errno::Errno;
use crate::sys::termios::Termios;
#[cfg(feature = "process")]
use crate::unistd::{ForkResult, Pid};
use crate::{fcntl, unistd, Result};
/// Representation of a master/slave pty pair
///
/// This is returned by `openpty`. Note that this type does *not* implement `Drop`, so the user
/// must manually close the file descriptors.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct OpenptyResult {
/// The master port in a virtual pty pair
pub master: RawFd,
/// The slave port in a virtual pty pair
pub slave: RawFd,
}
feature! {
#![feature = "process"]
/// Representation of a master with a forked pty
///
/// This is returned by `forkpty`. Note that this type does *not* implement `Drop`, so the user
/// must manually close the file descriptors.
#[derive(Clone, Copy, Debug)]
pub struct ForkptyResult {
/// The master port in a virtual pty pair
pub master: RawFd,
/// Metadata about forked process
pub fork_result: ForkResult,
}
}
/// Representation of the Master device in a master/slave pty pair
///
/// While this datatype is a thin wrapper around `RawFd`, it enforces that the available PTY
/// functions are given the correct file descriptor. Additionally this type implements `Drop`,
/// so that when it's consumed or goes out of scope, it's automatically cleaned-up.
#[derive(Debug, Eq, Hash, PartialEq)]
pub struct PtyMaster(RawFd);
impl AsRawFd for PtyMaster {
fn as_raw_fd(&self) -> RawFd {
self.0
}
}
impl IntoRawFd for PtyMaster {
fn into_raw_fd(self) -> RawFd {
let fd = self.0;
mem::forget(self);
fd
}
}
impl Drop for PtyMaster {
fn drop(&mut self) {
// On drop, we ignore errors like EINTR and EIO because there's no clear
// way to handle them, we can't return anything, and (on FreeBSD at
// least) the file descriptor is deallocated in these cases. However,
// we must panic on EBADF, because it is always an error to close an
// invalid file descriptor. That frequently indicates a double-close
// condition, which can cause confusing errors for future I/O
// operations.
let e = unistd::close(self.0);
if e == Err(Errno::EBADF) {
panic!("Closing an invalid file descriptor!");
};
}
}
impl io::Read for PtyMaster {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
unistd::read(self.0, buf).map_err(io::Error::from)
}
}
impl io::Write for PtyMaster {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
unistd::write(self.0, buf).map_err(io::Error::from)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl io::Read for &PtyMaster {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
unistd::read(self.0, buf).map_err(io::Error::from)
}
}
impl io::Write for &PtyMaster {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
unistd::write(self.0, buf).map_err(io::Error::from)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
/// Grant access to a slave pseudoterminal (see
/// [`grantpt(3)`](https://pubs.opengroup.org/onlinepubs/9699919799/functions/grantpt.html))
///
/// `grantpt()` changes the mode and owner of the slave pseudoterminal device corresponding to the
/// master pseudoterminal referred to by `fd`. This is a necessary step towards opening the slave.
#[inline]
pub fn grantpt(fd: &PtyMaster) -> Result<()> {
if unsafe { libc::grantpt(fd.as_raw_fd()) } < 0 {
return Err(Errno::last());
}
Ok(())
}
/// Open a pseudoterminal device (see
/// [`posix_openpt(3)`](https://pubs.opengroup.org/onlinepubs/9699919799/functions/posix_openpt.html))
///
/// `posix_openpt()` returns a file descriptor to an existing unused pseudoterminal master device.
///
/// # Examples
///
/// A common use case with this function is to open both a master and slave PTY pair. This can be
/// done as follows:
///
/// ```
/// use std::path::Path;
/// use nix::fcntl::{OFlag, open};
/// use nix::pty::{grantpt, posix_openpt, ptsname, unlockpt};
/// use nix::sys::stat::Mode;
///
/// # #[allow(dead_code)]
/// # fn run() -> nix::Result<()> {
/// // Open a new PTY master
/// let master_fd = posix_openpt(OFlag::O_RDWR)?;
///
/// // Allow a slave to be generated for it
/// grantpt(&master_fd)?;
/// unlockpt(&master_fd)?;
///
/// // Get the name of the slave
/// let slave_name = unsafe { ptsname(&master_fd) }?;
///
/// // Try to open the slave
/// let _slave_fd = open(Path::new(&slave_name), OFlag::O_RDWR, Mode::empty())?;
/// # Ok(())
/// # }
/// ```
#[inline]
pub fn posix_openpt(flags: fcntl::OFlag) -> Result<PtyMaster> {
let fd = unsafe { libc::posix_openpt(flags.bits()) };
if fd < 0 {
return Err(Errno::last());
}
Ok(PtyMaster(fd))
}
/// Get the name of the slave pseudoterminal (see
/// [`ptsname(3)`](https://man7.org/linux/man-pages/man3/ptsname.3.html))
///
/// `ptsname()` returns the name of the slave pseudoterminal device corresponding to the master
/// referred to by `fd`.
///
/// This value is useful for opening the slave pty once the master has already been opened with
/// `posix_openpt()`.
///
/// # Safety
///
/// `ptsname()` mutates global variables and is *not* threadsafe.
/// Mutating global variables is always considered `unsafe` by Rust and this
/// function is marked as `unsafe` to reflect that.
///
/// For a threadsafe and non-`unsafe` alternative on Linux, see `ptsname_r()`.
#[inline]
pub unsafe fn ptsname(fd: &PtyMaster) -> Result<String> {
let name_ptr = libc::ptsname(fd.as_raw_fd());
if name_ptr.is_null() {
return Err(Errno::last());
}
let name = CStr::from_ptr(name_ptr);
Ok(name.to_string_lossy().into_owned())
}
/// Get the name of the slave pseudoterminal (see
/// [`ptsname(3)`](https://man7.org/linux/man-pages/man3/ptsname.3.html))
///
/// `ptsname_r()` returns the name of the slave pseudoterminal device corresponding to the master
/// referred to by `fd`. This is the threadsafe version of `ptsname()`, but it is not part of the
/// POSIX standard and is instead a Linux-specific extension.
///
/// This value is useful for opening the slave ptty once the master has already been opened with
/// `posix_openpt()`.
#[cfg(any(target_os = "android", target_os = "linux"))]
#[cfg_attr(docsrs, doc(cfg(all())))]
#[inline]
pub fn ptsname_r(fd: &PtyMaster) -> Result<String> {
let mut name_buf = Vec::<libc::c_char>::with_capacity(64);
let name_buf_ptr = name_buf.as_mut_ptr();
let cname = unsafe {
let cap = name_buf.capacity();
if libc::ptsname_r(fd.as_raw_fd(), name_buf_ptr, cap) != 0 {
return Err(crate::Error::last());
}
CStr::from_ptr(name_buf.as_ptr())
};
let name = cname.to_string_lossy().into_owned();
Ok(name)
}
/// Unlock a pseudoterminal master/slave pseudoterminal pair (see
/// [`unlockpt(3)`](https://pubs.opengroup.org/onlinepubs/9699919799/functions/unlockpt.html))
///
/// `unlockpt()` unlocks the slave pseudoterminal device corresponding to the master pseudoterminal
/// referred to by `fd`. This must be called before trying to open the slave side of a
/// pseudoterminal.
#[inline]
pub fn unlockpt(fd: &PtyMaster) -> Result<()> {
if unsafe { libc::unlockpt(fd.as_raw_fd()) } < 0 {
return Err(Errno::last());
}
Ok(())
}
/// Create a new pseudoterminal, returning the slave and master file descriptors
/// in `OpenptyResult`
/// (see [`openpty`](https://man7.org/linux/man-pages/man3/openpty.3.html)).
///
/// If `winsize` is not `None`, the window size of the slave will be set to
/// the values in `winsize`. If `termios` is not `None`, the pseudoterminal's
/// terminal settings of the slave will be set to the values in `termios`.
#[inline]
pub fn openpty<
'a,
'b,
T: Into<Option<&'a Winsize>>,
U: Into<Option<&'b Termios>>,
>(
winsize: T,
termios: U,
) -> Result<OpenptyResult> {
use std::ptr;
let mut slave = mem::MaybeUninit::<libc::c_int>::uninit();
let mut master = mem::MaybeUninit::<libc::c_int>::uninit();
let ret = {
match (termios.into(), winsize.into()) {
(Some(termios), Some(winsize)) => {
let inner_termios = termios.get_libc_termios();
unsafe {
libc::openpty(
master.as_mut_ptr(),
slave.as_mut_ptr(),
ptr::null_mut(),
&*inner_termios as *const libc::termios as *mut _,
winsize as *const Winsize as *mut _,
)
}
}
(None, Some(winsize)) => unsafe {
libc::openpty(
master.as_mut_ptr(),
slave.as_mut_ptr(),
ptr::null_mut(),
ptr::null_mut(),
winsize as *const Winsize as *mut _,
)
},
(Some(termios), None) => {
let inner_termios = termios.get_libc_termios();
unsafe {
libc::openpty(
master.as_mut_ptr(),
slave.as_mut_ptr(),
ptr::null_mut(),
&*inner_termios as *const libc::termios as *mut _,
ptr::null_mut(),
)
}
}
(None, None) => unsafe {
libc::openpty(
master.as_mut_ptr(),
slave.as_mut_ptr(),
ptr::null_mut(),
ptr::null_mut(),
ptr::null_mut(),
)
},
}
};
Errno::result(ret)?;
unsafe {
Ok(OpenptyResult {
master: master.assume_init(),
slave: slave.assume_init(),
})
}
}
feature! {
#![feature = "process"]
/// Create a new pseudoterminal, returning the master file descriptor and forked pid.
/// in `ForkptyResult`
/// (see [`forkpty`](https://man7.org/linux/man-pages/man3/forkpty.3.html)).
///
/// If `winsize` is not `None`, the window size of the slave will be set to
/// the values in `winsize`. If `termios` is not `None`, the pseudoterminal's
/// terminal settings of the slave will be set to the values in `termios`.
///
/// # Safety
///
/// In a multithreaded program, only [async-signal-safe] functions like `pause`
/// and `_exit` may be called by the child (the parent isn't restricted). Note
/// that memory allocation may **not** be async-signal-safe and thus must be
/// prevented.
///
/// Those functions are only a small subset of your operating system's API, so
/// special care must be taken to only invoke code you can control and audit.
///
/// [async-signal-safe]: https://man7.org/linux/man-pages/man7/signal-safety.7.html
pub unsafe fn forkpty<'a, 'b, T: Into<Option<&'a Winsize>>, U: Into<Option<&'b Termios>>>(
winsize: T,
termios: U,
) -> Result<ForkptyResult> {
use std::ptr;
let mut master = mem::MaybeUninit::<libc::c_int>::uninit();
let term = match termios.into() {
Some(termios) => {
let inner_termios = termios.get_libc_termios();
&*inner_termios as *const libc::termios as *mut _
},
None => ptr::null_mut(),
};
let win = winsize
.into()
.map(|ws| ws as *const Winsize as *mut _)
.unwrap_or(ptr::null_mut());
let res = libc::forkpty(master.as_mut_ptr(), ptr::null_mut(), term, win);
let fork_result = Errno::result(res).map(|res| match res {
0 => ForkResult::Child,
res => ForkResult::Parent { child: Pid::from_raw(res) },
})?;
Ok(ForkptyResult {
master: master.assume_init(),
fork_result,
})
}
}