1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
mod ffi;
use std::os::raw::{c_int, c_void};
#[derive(Debug)]
pub enum Error {
CvError,
GenericError,
NoExtrinsicsFound,
}
impl std::error::Error for Error {}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{:?}", self)
}
}
impl From<ffi::cv_return_value_double> for Result<f64, Error> {
fn from(orig: ffi::cv_return_value_double) -> Result<f64, Error> {
if orig.is_cv_exception != 0 {
Err(Error::CvError)
} else if orig.is_other_exception != 0 {
Err(Error::GenericError)
} else {
Ok(orig.result)
}
}
}
impl From<ffi::cv_return_value_bool> for Result<bool, Error> {
fn from(orig: ffi::cv_return_value_bool) -> Result<bool, Error> {
if orig.is_cv_exception != 0 {
Err(Error::CvError)
} else if orig.is_other_exception != 0 {
Err(Error::GenericError)
} else {
Ok(orig.result)
}
}
}
struct SliceData {
ptr: *mut c_void,
num_elements: usize,
}
impl From<ffi::cv_return_value_slice> for Result<SliceData, Error> {
fn from(orig: ffi::cv_return_value_slice) -> Result<SliceData, Error> {
if orig.is_cv_exception != 0 {
Err(Error::CvError)
} else if orig.is_other_exception != 0 {
Err(Error::GenericError)
} else {
Ok(SliceData {
ptr: orig.ptr,
num_elements: orig.num_elements as usize,
})
}
}
}
#[derive(Debug)]
pub struct CalibrationResult {
/// mean reprojection distance, in pixels
pub mean_reprojection_distance_pixels: f64,
/// camera calibration matrix, row major order
pub camera_matrix: [f64; 9],
/// non-linear distortion coefficients (k1, k2, p1, p2, k3)
pub distortion_coeffs: [f64; 5],
/// rotation matrices, row major order
pub rotation_matrices: Vec<[f64; 9]>,
/// rotation vectors
pub translation_vectors: Vec<[f64; 3]>,
}
/// A point with a view in image (2D) and world (3D)
#[derive(Debug)]
pub struct CorrespondingPoint {
pub object_point: (f64, f64, f64),
pub image_point: (f64, f64),
}
pub fn calibrate_camera(
all_pts: &Vec<Vec<CorrespondingPoint>>,
width: i32,
height: i32,
) -> Result<CalibrationResult, Error> {
let point_counts: Vec<i32> = all_pts
.iter()
.map(|image_pts| image_pts.len() as i32)
.collect();
let flat_all_pts: Vec<&CorrespondingPoint> = all_pts.iter().flatten().collect();
let total = flat_all_pts.len();
let mut object_points = Vec::with_capacity(total * 3);
let mut image_points = Vec::with_capacity(total * 2);
for pt in flat_all_pts.iter() {
object_points.push(pt.object_point.0);
object_points.push(pt.object_point.1);
object_points.push(pt.object_point.2);
image_points.push(pt.image_point.0);
image_points.push(pt.image_point.1);
}
let num_images = point_counts.len();
debug_assert!(total * 3 == object_points.len());
debug_assert!(total * 2 == image_points.len());
let mut camera_matrix = [0.0; 9];
camera_matrix[0] = 1.0;
camera_matrix[4] = 1.0;
camera_matrix[8] = 0.0;
let mut distortion_coeffs = [0.0; 5];
let mut rotation_matrices: Vec<[f64; 9]> = (0..num_images).map(|_| [0.0; 9]).collect();
let mut translation_vectors: Vec<[f64; 3]> = (0..num_images).map(|_| [0.0; 3]).collect();
let r1: Result<f64, Error> = unsafe {
ffi::calibrate_camera(
num_images as i32,
object_points.as_ptr(),
image_points.as_ptr(),
point_counts.as_ptr(),
width,
height,
camera_matrix.as_mut_ptr(),
distortion_coeffs.as_mut_ptr(),
rotation_matrices[0].as_mut_ptr(),
translation_vectors[0].as_mut_ptr(),
)
}
.into();
let mean_reprojection_distance_pixels = r1?;
debug_assert!(rotation_matrices.len() == all_pts.len());
debug_assert!(translation_vectors.len() == all_pts.len());
Ok(CalibrationResult {
mean_reprojection_distance_pixels,
camera_matrix,
distortion_coeffs,
rotation_matrices,
translation_vectors,
})
}
// TODO Port thi python code (from image_pipeline/camera_calibration/calibrator.py )
// def _get_corners(img, board, refine = True, checkerboard_flags=0):
// """
// Get corners for a particular chessboard for an image
// """
// h = img.shape[0]
// w = img.shape[1]
// if len(img.shape) == 3 and img.shape[2] == 3:
// mono = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
// else:
// mono = img
// checkerboard_flags=cv2.CALIB_CB_FAST_CHECK
// (ok, corners) = cv2.findChessboardCorners(mono, (board.n_cols, board.n_rows), flags = cv2.CALIB_CB_ADAPTIVE_THRESH |
// cv2.CALIB_CB_NORMALIZE_IMAGE | checkerboard_flags)
// if not ok:
// return (ok, corners)
// # If any corners are within BORDER pixels of the screen edge, reject the detection by setting ok to false
// # NOTE: This may cause problems with very low-resolution cameras, where 8 pixels is a non-negligible fraction
// # of the image size. See http://answers.ros.org/question/3155/how-can-i-calibrate-low-resolution-cameras
// BORDER = 8
// if not all([(BORDER < corners[i, 0, 0] < (w - BORDER)) and (BORDER < corners[i, 0, 1] < (h - BORDER)) for i in range(corners.shape[0])]):
// ok = False
// # Ensure that all corner-arrays are going from top to bottom.
// if board.n_rows!=board.n_cols:
// if corners[0, 0, 1] > corners[-1, 0, 1]:
// corners = numpy.copy(numpy.flipud(corners))
// else:
// direction_corners=(corners[-1]-corners[0])>=numpy.array([[0.0,0.0]])
// if not numpy.all(direction_corners):
// if not numpy.any(direction_corners):
// corners = numpy.copy(numpy.flipud(corners))
// elif direction_corners[0][0]:
// corners=numpy.rot90(corners.reshape(board.n_rows,board.n_cols,2)).reshape(board.n_cols*board.n_rows,1,2)
// else:
// corners=numpy.rot90(corners.reshape(board.n_rows,board.n_cols,2),3).reshape(board.n_cols*board.n_rows,1,2)
// if refine and ok:
// # Use a radius of half the minimum distance between corners. This should be large enough to snap to the
// # correct corner, but not so large as to include a wrong corner in the search window.
// min_distance = float("inf")
// for row in range(board.n_rows):
// for col in range(board.n_cols - 1):
// index = row*board.n_rows + col
// min_distance = min(min_distance, _pdist(corners[index, 0], corners[index + 1, 0]))
// for row in range(board.n_rows - 1):
// for col in range(board.n_cols):
// index = row*board.n_rows + col
// min_distance = min(min_distance, _pdist(corners[index, 0], corners[index + board.n_cols, 0]))
// radius = int(math.ceil(min_distance * 0.5))
// cv2.cornerSubPix(mono, corners, (radius,radius), (-1,-1),
// ( cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1 ))
// return (ok, corners)
struct VecPoint2f {
inner: *mut c_void,
}
impl VecPoint2f {
fn new() -> Self {
let inner = unsafe { ffi::vec_point2f_new() };
Self { inner }
}
fn as_slice(&self) -> &[(f32, f32)] {
let data: Result<SliceData, Error> = unsafe { ffi::vec_point2f_slice(self.inner) }.into();
let data: SliceData = data.expect("slice");
let result =
unsafe { std::slice::from_raw_parts(data.ptr as *const (f32, f32), data.num_elements) };
result
}
fn inner(&mut self) -> *mut c_void {
self.inner
}
}
impl Drop for VecPoint2f {
fn drop(&mut self) {
unsafe { ffi::vec_point2f_delete(self.inner) }
}
}
pub fn find_chessboard_corners(
rgb_data: &[u8],
im_width: u32,
im_height: u32,
pattern_width: usize,
pattern_height: usize,
) -> Result<Option<Vec<(f32, f32)>>, Error> {
let mut corners = VecPoint2f::new();
let r1: Result<bool, Error> = unsafe {
ffi::find_chessboard_corners_inner(
rgb_data.as_ptr(),
im_width as c_int,
im_height as c_int,
pattern_width as c_int,
pattern_height as c_int,
corners.inner(),
)
}
.into();
let success: bool = r1?;
if success {
let cv_view: &[(f32, f32)] = corners.as_slice();
Ok(Some(cv_view.to_vec()))
} else {
Ok(None)
}
}
#[derive(Debug, Clone)]
pub struct Extrinsics {
pub rvec: [f64; 3],
pub tvec: [f64; 3],
}
pub enum PoseMethod {
/// Infinitesimal Plane-Based Pose Estimation
///
/// Object points must be coplanar.
Ippe,
/// Efficient Perspective-n-Point Camera Pose Estimation
Epnp,
}
impl PoseMethod {
fn to_c(&self) -> c_int {
match self {
Self::Ippe => unsafe { ffi::ippe() },
Self::Epnp => unsafe { ffi::epnp() },
}
}
}
/// Finds an object pose from 3D-2D point correspondences.
pub fn solve_pnp(
all_pts: &[CorrespondingPoint],
camera_matrix: &[f64; 9],
distortion_coeffs: &[f64; 5],
method: PoseMethod,
) -> Result<Extrinsics, Error> {
let n_points = all_pts.len();
let mut object_points = Vec::with_capacity(n_points * 3);
let mut image_points = Vec::with_capacity(n_points * 2);
for pt in all_pts.iter() {
object_points.push(pt.object_point.0);
object_points.push(pt.object_point.1);
object_points.push(pt.object_point.2);
image_points.push(pt.image_point.0);
image_points.push(pt.image_point.1);
}
let mut extrinsics = Extrinsics {
rvec: [0.0f64; 3],
tvec: [0.0f64; 3],
};
let r1: Result<bool, Error> = unsafe {
ffi::solve_pnp(
n_points.try_into().unwrap(),
object_points.as_ptr(),
image_points.as_ptr(),
camera_matrix.as_ptr(),
distortion_coeffs.as_ptr(),
extrinsics.rvec.as_mut_ptr(),
extrinsics.tvec.as_mut_ptr(),
method.to_c(),
)
}
.into();
if !(r1?) {
return Err(Error::NoExtrinsicsFound);
}
Ok(extrinsics)
}
#[test]
#[should_panic]
fn test_linking() {
let rgb: &[u8] = b"12345678901234567890";
println!("It is expected to see 'OpenCV Error: ...' below here");
find_chessboard_corners(rgb, 4, 5, 1, 1).unwrap().unwrap();
}