1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
//! BigNum implementation
//!
//! Large numbers are important for a cryptographic library. OpenSSL implementation
//! of BigNum uses dynamically assigned memory to store an array of bit chunks. This
//! allows numbers of any size to be compared and mathematical functions performed.
//!
//! OpenSSL wiki describes the [`BIGNUM`] data structure.
//!
//! # Examples
//!
//! ```
//! use openssl::bn::BigNum;
//! use openssl::error::ErrorStack;
//!
//! fn main() -> Result<(), ErrorStack> {
//! let a = BigNum::new()?; // a = 0
//! let b = BigNum::from_dec_str("1234567890123456789012345")?;
//! let c = &a * &b;
//! assert_eq!(a, c);
//! Ok(())
//! }
//! ```
//!
//! [`BIGNUM`]: https://wiki.openssl.org/index.php/Manual:Bn_internal(3)
use cfg_if::cfg_if;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::c_int;
use std::cmp::Ordering;
use std::ffi::CString;
use std::ops::{Add, Deref, Div, Mul, Neg, Rem, Shl, Shr, Sub};
use std::{fmt, ptr};
use crate::asn1::Asn1Integer;
use crate::error::ErrorStack;
use crate::string::OpensslString;
use crate::{cvt, cvt_n, cvt_p, LenType};
use openssl_macros::corresponds;
cfg_if! {
if #[cfg(any(ossl110, libressl350))] {
use ffi::{
BN_get_rfc2409_prime_1024, BN_get_rfc2409_prime_768, BN_get_rfc3526_prime_1536,
BN_get_rfc3526_prime_2048, BN_get_rfc3526_prime_3072, BN_get_rfc3526_prime_4096,
BN_get_rfc3526_prime_6144, BN_get_rfc3526_prime_8192, BN_is_negative,
};
} else if #[cfg(boringssl)] {
use ffi::BN_is_negative;
} else {
use ffi::{
get_rfc2409_prime_1024 as BN_get_rfc2409_prime_1024,
get_rfc2409_prime_768 as BN_get_rfc2409_prime_768,
get_rfc3526_prime_1536 as BN_get_rfc3526_prime_1536,
get_rfc3526_prime_2048 as BN_get_rfc3526_prime_2048,
get_rfc3526_prime_3072 as BN_get_rfc3526_prime_3072,
get_rfc3526_prime_4096 as BN_get_rfc3526_prime_4096,
get_rfc3526_prime_6144 as BN_get_rfc3526_prime_6144,
get_rfc3526_prime_8192 as BN_get_rfc3526_prime_8192,
};
#[allow(bad_style)]
unsafe fn BN_is_negative(bn: *const ffi::BIGNUM) -> c_int {
(*bn).neg
}
}
}
/// Options for the most significant bits of a randomly generated `BigNum`.
pub struct MsbOption(c_int);
impl MsbOption {
/// The most significant bit of the number may be 0.
pub const MAYBE_ZERO: MsbOption = MsbOption(-1);
/// The most significant bit of the number must be 1.
pub const ONE: MsbOption = MsbOption(0);
/// The most significant two bits of the number must be 1.
///
/// The number of bits in the product of two such numbers will always be exactly twice the
/// number of bits in the original numbers.
pub const TWO_ONES: MsbOption = MsbOption(1);
}
foreign_type_and_impl_send_sync! {
type CType = ffi::BN_CTX;
fn drop = ffi::BN_CTX_free;
/// Temporary storage for BigNums on the secure heap
///
/// BigNum values are stored dynamically and therefore can be expensive
/// to allocate. BigNumContext and the OpenSSL [`BN_CTX`] structure are used
/// internally when passing BigNum values between subroutines.
///
/// [`BN_CTX`]: https://www.openssl.org/docs/manmaster/crypto/BN_CTX_new.html
pub struct BigNumContext;
/// Reference to [`BigNumContext`]
///
/// [`BigNumContext`]: struct.BigNumContext.html
pub struct BigNumContextRef;
}
impl BigNumContext {
/// Returns a new `BigNumContext`.
#[corresponds(BN_CTX_new)]
pub fn new() -> Result<BigNumContext, ErrorStack> {
unsafe {
ffi::init();
cvt_p(ffi::BN_CTX_new()).map(BigNumContext)
}
}
/// Returns a new secure `BigNumContext`.
#[corresponds(BN_CTX_secure_new)]
#[cfg(ossl110)]
pub fn new_secure() -> Result<BigNumContext, ErrorStack> {
unsafe {
ffi::init();
cvt_p(ffi::BN_CTX_secure_new()).map(BigNumContext)
}
}
}
foreign_type_and_impl_send_sync! {
type CType = ffi::BIGNUM;
fn drop = ffi::BN_free;
/// Dynamically sized large number implementation
///
/// Perform large number mathematics. Create a new BigNum
/// with [`new`]. Perform standard mathematics on large numbers using
/// methods from [`Dref<Target = BigNumRef>`]
///
/// OpenSSL documentation at [`BN_new`].
///
/// [`new`]: struct.BigNum.html#method.new
/// [`Dref<Target = BigNumRef>`]: struct.BigNum.html#deref-methods
/// [`BN_new`]: https://www.openssl.org/docs/manmaster/crypto/BN_new.html
///
/// # Examples
/// ```
/// use openssl::bn::BigNum;
/// # use openssl::error::ErrorStack;
/// # fn bignums() -> Result< (), ErrorStack > {
/// let little_big = BigNum::from_u32(std::u32::MAX)?;
/// assert_eq!(*&little_big.num_bytes(), 4);
/// # Ok(())
/// # }
/// # fn main () { bignums(); }
/// ```
pub struct BigNum;
/// Reference to a [`BigNum`]
///
/// [`BigNum`]: struct.BigNum.html
pub struct BigNumRef;
}
impl BigNumRef {
/// Erases the memory used by this `BigNum`, resetting its value to 0.
///
/// This can be used to destroy sensitive data such as keys when they are no longer needed.
#[corresponds(BN_clear)]
pub fn clear(&mut self) {
unsafe { ffi::BN_clear(self.as_ptr()) }
}
/// Adds a `u32` to `self`.
#[corresponds(BN_add_word)]
pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_add_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) }
}
/// Subtracts a `u32` from `self`.
#[corresponds(BN_sub_word)]
pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_sub_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) }
}
/// Multiplies a `u32` by `self`.
#[corresponds(BN_mul_word)]
pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_mul_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) }
}
/// Divides `self` by a `u32`, returning the remainder.
#[corresponds(BN_div_word)]
#[allow(clippy::useless_conversion)]
pub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack> {
unsafe {
let r = ffi::BN_div_word(self.as_ptr(), w.into());
if r == ffi::BN_ULONG::max_value() {
Err(ErrorStack::get())
} else {
Ok(r.into())
}
}
}
/// Returns the result of `self` modulo `w`.
#[corresponds(BN_mod_word)]
#[allow(clippy::useless_conversion)]
pub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack> {
unsafe {
let r = ffi::BN_mod_word(self.as_ptr(), w.into());
if r == ffi::BN_ULONG::max_value() {
Err(ErrorStack::get())
} else {
Ok(r.into())
}
}
}
/// Places a cryptographically-secure pseudo-random nonnegative
/// number less than `self` in `rnd`.
#[corresponds(BN_rand_range)]
pub fn rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) }
}
/// The cryptographically weak counterpart to `rand_in_range`.
#[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
#[corresponds(BN_pseudo_rand_range)]
pub fn pseudo_rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_pseudo_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) }
}
/// Sets bit `n`. Equivalent to `self |= (1 << n)`.
///
/// When setting a bit outside of `self`, it is expanded.
#[corresponds(BN_set_bit)]
#[allow(clippy::useless_conversion)]
pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_set_bit(self.as_ptr(), n.into())).map(|_| ()) }
}
/// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`.
///
/// When clearing a bit outside of `self`, an error is returned.
#[corresponds(BN_clear_bit)]
#[allow(clippy::useless_conversion)]
pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_clear_bit(self.as_ptr(), n.into())).map(|_| ()) }
}
/// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise.
#[corresponds(BN_is_bit_set)]
#[allow(clippy::useless_conversion)]
pub fn is_bit_set(&self, n: i32) -> bool {
unsafe { ffi::BN_is_bit_set(self.as_ptr(), n.into()) == 1 }
}
/// Truncates `self` to the lowest `n` bits.
///
/// An error occurs if `self` is already shorter than `n` bits.
#[corresponds(BN_mask_bits)]
#[allow(clippy::useless_conversion)]
pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_mask_bits(self.as_ptr(), n.into())).map(|_| ()) }
}
/// Places `a << 1` in `self`. Equivalent to `self * 2`.
#[corresponds(BN_lshift1)]
pub fn lshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_lshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) }
}
/// Places `a >> 1` in `self`. Equivalent to `self / 2`.
#[corresponds(BN_rshift1)]
pub fn rshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_rshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) }
}
/// Places `a + b` in `self`. [`core::ops::Add`] is also implemented for `BigNumRef`.
///
/// [`core::ops::Add`]: struct.BigNumRef.html#method.add
#[corresponds(BN_add)]
pub fn checked_add(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_add(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) }
}
/// Places `a - b` in `self`. [`core::ops::Sub`] is also implemented for `BigNumRef`.
///
/// [`core::ops::Sub`]: struct.BigNumRef.html#method.sub
#[corresponds(BN_sub)]
pub fn checked_sub(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_sub(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) }
}
/// Places `a << n` in `self`. Equivalent to `a * 2 ^ n`.
#[corresponds(BN_lshift)]
#[allow(clippy::useless_conversion)]
pub fn lshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_lshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) }
}
/// Places `a >> n` in `self`. Equivalent to `a / 2 ^ n`.
#[corresponds(BN_rshift)]
#[allow(clippy::useless_conversion)]
pub fn rshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_rshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) }
}
/// Creates a new BigNum with the same value.
#[corresponds(BN_dup)]
pub fn to_owned(&self) -> Result<BigNum, ErrorStack> {
unsafe { cvt_p(ffi::BN_dup(self.as_ptr())).map(|b| BigNum::from_ptr(b)) }
}
/// Sets the sign of `self`. Pass true to set `self` to a negative. False sets
/// `self` positive.
#[corresponds(BN_set_negative)]
pub fn set_negative(&mut self, negative: bool) {
unsafe { ffi::BN_set_negative(self.as_ptr(), negative as c_int) }
}
/// Compare the absolute values of `self` and `oth`.
///
/// # Examples
///
/// ```
/// # use openssl::bn::BigNum;
/// # use std::cmp::Ordering;
/// let s = -BigNum::from_u32(8).unwrap();
/// let o = BigNum::from_u32(8).unwrap();
///
/// assert_eq!(s.ucmp(&o), Ordering::Equal);
/// ```
#[corresponds(BN_ucmp)]
pub fn ucmp(&self, oth: &BigNumRef) -> Ordering {
unsafe { ffi::BN_ucmp(self.as_ptr(), oth.as_ptr()).cmp(&0) }
}
/// Returns `true` if `self` is negative.
#[corresponds(BN_is_negative)]
pub fn is_negative(&self) -> bool {
unsafe { BN_is_negative(self.as_ptr()) == 1 }
}
/// Returns `true` is `self` is even.
#[corresponds(BN_is_even)]
#[cfg(any(ossl110, boringssl, libressl350))]
pub fn is_even(&self) -> bool {
!self.is_odd()
}
/// Returns `true` is `self` is odd.
#[corresponds(BN_is_odd)]
#[cfg(any(ossl110, boringssl, libressl350))]
pub fn is_odd(&self) -> bool {
unsafe { ffi::BN_is_odd(self.as_ptr()) == 1 }
}
/// Returns the number of significant bits in `self`.
#[corresponds(BN_num_bits)]
#[allow(clippy::unnecessary_cast)]
pub fn num_bits(&self) -> i32 {
unsafe { ffi::BN_num_bits(self.as_ptr()) as i32 }
}
/// Returns the size of `self` in bytes. Implemented natively.
pub fn num_bytes(&self) -> i32 {
(self.num_bits() + 7) / 8
}
/// Generates a cryptographically strong pseudo-random `BigNum`, placing it in `self`.
///
/// # Parameters
///
/// * `bits`: Length of the number in bits.
/// * `msb`: The desired properties of the most significant bit. See [`constants`].
/// * `odd`: If `true`, the generated number will be odd.
///
/// # Examples
///
/// ```
/// use openssl::bn::{BigNum, MsbOption};
/// use openssl::error::ErrorStack;
///
/// fn generate_random() -> Result< BigNum, ErrorStack > {
/// let mut big = BigNum::new()?;
///
/// // Generates a 128-bit odd random number
/// big.rand(128, MsbOption::MAYBE_ZERO, true);
/// Ok((big))
/// }
/// ```
///
/// [`constants`]: index.html#constants
#[corresponds(BN_rand)]
#[allow(clippy::useless_conversion)]
pub fn rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_rand(
self.as_ptr(),
bits.into(),
msb.0,
odd as c_int,
))
.map(|_| ())
}
}
/// The cryptographically weak counterpart to `rand`. Not suitable for key generation.
#[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
#[corresponds(BN_pseudo_rand)]
#[allow(clippy::useless_conversion)]
pub fn pseudo_rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_pseudo_rand(
self.as_ptr(),
bits.into(),
msb.0,
odd as c_int,
))
.map(|_| ())
}
}
/// Generates a prime number, placing it in `self`.
///
/// # Parameters
///
/// * `bits`: The length of the prime in bits (lower bound).
/// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime.
/// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the
/// generated prime and `rem` is `1` if not specified (`None`).
///
/// # Examples
///
/// ```
/// use openssl::bn::BigNum;
/// use openssl::error::ErrorStack;
///
/// fn generate_weak_prime() -> Result< BigNum, ErrorStack > {
/// let mut big = BigNum::new()?;
///
/// // Generates a 128-bit simple prime number
/// big.generate_prime(128, false, None, None);
/// Ok((big))
/// }
/// ```
#[corresponds(BN_generate_prime_ex)]
pub fn generate_prime(
&mut self,
bits: i32,
safe: bool,
add: Option<&BigNumRef>,
rem: Option<&BigNumRef>,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_generate_prime_ex(
self.as_ptr(),
bits as c_int,
safe as c_int,
add.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()),
rem.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()),
ptr::null_mut(),
))
.map(|_| ())
}
}
/// Places the result of `a * b` in `self`.
/// [`core::ops::Mul`] is also implemented for `BigNumRef`.
///
/// [`core::ops::Mul`]: struct.BigNumRef.html#method.mul
#[corresponds(BN_mul)]
pub fn checked_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mul(
self.as_ptr(),
a.as_ptr(),
b.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `a / b` in `self`. The remainder is discarded.
/// [`core::ops::Div`] is also implemented for `BigNumRef`.
///
/// [`core::ops::Div`]: struct.BigNumRef.html#method.div
#[corresponds(BN_div)]
pub fn checked_div(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_div(
self.as_ptr(),
ptr::null_mut(),
a.as_ptr(),
b.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `a % b` in `self`.
#[corresponds(BN_div)]
pub fn checked_rem(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_div(
ptr::null_mut(),
self.as_ptr(),
a.as_ptr(),
b.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `a / b` in `self` and `a % b` in `rem`.
#[corresponds(BN_div)]
pub fn div_rem(
&mut self,
rem: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_div(
self.as_ptr(),
rem.as_ptr(),
a.as_ptr(),
b.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `a²` in `self`.
#[corresponds(BN_sqr)]
pub fn sqr(&mut self, a: &BigNumRef, ctx: &mut BigNumContextRef) -> Result<(), ErrorStack> {
unsafe { cvt(ffi::BN_sqr(self.as_ptr(), a.as_ptr(), ctx.as_ptr())).map(|_| ()) }
}
/// Places the result of `a mod m` in `self`. As opposed to `div_rem`
/// the result is non-negative.
#[corresponds(BN_nnmod)]
pub fn nnmod(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_nnmod(
self.as_ptr(),
a.as_ptr(),
m.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `(a + b) mod m` in `self`.
#[corresponds(BN_mod_add)]
pub fn mod_add(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_add(
self.as_ptr(),
a.as_ptr(),
b.as_ptr(),
m.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `(a - b) mod m` in `self`.
#[corresponds(BN_mod_sub)]
pub fn mod_sub(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_sub(
self.as_ptr(),
a.as_ptr(),
b.as_ptr(),
m.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `(a * b) mod m` in `self`.
#[corresponds(BN_mod_mul)]
pub fn mod_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_mul(
self.as_ptr(),
a.as_ptr(),
b.as_ptr(),
m.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `a² mod m` in `self`.
#[corresponds(BN_mod_sqr)]
pub fn mod_sqr(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_sqr(
self.as_ptr(),
a.as_ptr(),
m.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places into `self` the modular square root of `a` such that `self^2 = a (mod p)`
#[corresponds(BN_mod_sqrt)]
pub fn mod_sqrt(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt_p(ffi::BN_mod_sqrt(
self.as_ptr(),
a.as_ptr(),
p.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `a^p` in `self`.
#[corresponds(BN_exp)]
pub fn exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_exp(
self.as_ptr(),
a.as_ptr(),
p.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the result of `a^p mod m` in `self`.
#[corresponds(BN_mod_exp)]
pub fn mod_exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_mod_exp(
self.as_ptr(),
a.as_ptr(),
p.as_ptr(),
m.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the inverse of `a` modulo `n` in `self`.
#[corresponds(BN_mod_inverse)]
pub fn mod_inverse(
&mut self,
a: &BigNumRef,
n: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt_p(ffi::BN_mod_inverse(
self.as_ptr(),
a.as_ptr(),
n.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Places the greatest common denominator of `a` and `b` in `self`.
#[corresponds(BN_gcd)]
pub fn gcd(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef,
) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::BN_gcd(
self.as_ptr(),
a.as_ptr(),
b.as_ptr(),
ctx.as_ptr(),
))
.map(|_| ())
}
}
/// Checks whether `self` is prime.
///
/// Performs a Miller-Rabin probabilistic primality test with `checks` iterations.
///
/// # Return Value
///
/// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`.
#[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
#[corresponds(BN_is_prime_ex)]
#[allow(clippy::useless_conversion)]
pub fn is_prime(&self, checks: i32, ctx: &mut BigNumContextRef) -> Result<bool, ErrorStack> {
unsafe {
cvt_n(ffi::BN_is_prime_ex(
self.as_ptr(),
checks.into(),
ctx.as_ptr(),
ptr::null_mut(),
))
.map(|r| r != 0)
}
}
/// Checks whether `self` is prime with optional trial division.
///
/// If `do_trial_division` is `true`, first performs trial division by a number of small primes.
/// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks`
/// iterations.
///
/// # Return Value
///
/// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`.
#[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
#[corresponds(BN_is_prime_fasttest_ex)]
#[allow(clippy::useless_conversion)]
pub fn is_prime_fasttest(
&self,
checks: i32,
ctx: &mut BigNumContextRef,
do_trial_division: bool,
) -> Result<bool, ErrorStack> {
unsafe {
cvt_n(ffi::BN_is_prime_fasttest_ex(
self.as_ptr(),
checks.into(),
ctx.as_ptr(),
do_trial_division as c_int,
ptr::null_mut(),
))
.map(|r| r != 0)
}
}
/// Returns a big-endian byte vector representation of the absolute value of `self`.
///
/// `self` can be recreated by using `from_slice`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let s = -BigNum::from_u32(4543).unwrap();
/// let r = BigNum::from_u32(4543).unwrap();
///
/// let s_vec = s.to_vec();
/// assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r);
/// ```
#[corresponds(BN_bn2bin)]
pub fn to_vec(&self) -> Vec<u8> {
let size = self.num_bytes() as usize;
let mut v = Vec::with_capacity(size);
unsafe {
ffi::BN_bn2bin(self.as_ptr(), v.as_mut_ptr());
v.set_len(size);
}
v
}
/// Returns a big-endian byte vector representation of the absolute value of `self` padded
/// to `pad_to` bytes.
///
/// If `pad_to` is less than `self.num_bytes()` then an error is returned.
///
/// `self` can be recreated by using `from_slice`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let bn = BigNum::from_u32(0x4543).unwrap();
///
/// let bn_vec = bn.to_vec_padded(4).unwrap();
/// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]);
///
/// let r = bn.to_vec_padded(1);
/// assert!(r.is_err());
///
/// let bn = -BigNum::from_u32(0x4543).unwrap();
/// let bn_vec = bn.to_vec_padded(4).unwrap();
/// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]);
/// ```
#[corresponds(BN_bn2binpad)]
#[cfg(any(ossl110, libressl340, boringssl))]
pub fn to_vec_padded(&self, pad_to: i32) -> Result<Vec<u8>, ErrorStack> {
let mut v = Vec::with_capacity(pad_to as usize);
unsafe {
cvt(ffi::BN_bn2binpad(self.as_ptr(), v.as_mut_ptr(), pad_to))?;
v.set_len(pad_to as usize);
}
Ok(v)
}
/// Returns a decimal string representation of `self`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let s = -BigNum::from_u32(12345).unwrap();
///
/// assert_eq!(&**s.to_dec_str().unwrap(), "-12345");
/// ```
#[corresponds(BN_bn2dec)]
pub fn to_dec_str(&self) -> Result<OpensslString, ErrorStack> {
unsafe {
let buf = cvt_p(ffi::BN_bn2dec(self.as_ptr()))?;
Ok(OpensslString::from_ptr(buf))
}
}
/// Returns a hexadecimal string representation of `self`.
///
/// ```
/// # use openssl::bn::BigNum;
/// let s = -BigNum::from_u32(0x99ff).unwrap();
///
/// assert_eq!(s.to_hex_str().unwrap().to_uppercase(), "-99FF");
/// ```
#[corresponds(BN_bn2hex)]
pub fn to_hex_str(&self) -> Result<OpensslString, ErrorStack> {
unsafe {
let buf = cvt_p(ffi::BN_bn2hex(self.as_ptr()))?;
Ok(OpensslString::from_ptr(buf))
}
}
/// Returns an `Asn1Integer` containing the value of `self`.
#[corresponds(BN_to_ASN1_INTEGER)]
pub fn to_asn1_integer(&self) -> Result<Asn1Integer, ErrorStack> {
unsafe {
cvt_p(ffi::BN_to_ASN1_INTEGER(self.as_ptr(), ptr::null_mut()))
.map(|p| Asn1Integer::from_ptr(p))
}
}
/// Force constant time computation on this value.
#[corresponds(BN_set_flags)]
#[cfg(ossl110)]
pub fn set_const_time(&mut self) {
unsafe { ffi::BN_set_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME) }
}
/// Returns true if `self` is in const time mode.
#[corresponds(BN_get_flags)]
#[cfg(ossl110)]
pub fn is_const_time(&self) -> bool {
unsafe {
let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME);
ret == ffi::BN_FLG_CONSTTIME
}
}
/// Returns true if `self` was created with [`BigNum::new_secure`].
#[corresponds(BN_get_flags)]
#[cfg(ossl110)]
pub fn is_secure(&self) -> bool {
unsafe {
let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_SECURE);
ret == ffi::BN_FLG_SECURE
}
}
}
impl BigNum {
/// Creates a new `BigNum` with the value 0.
#[corresponds(BN_new)]
pub fn new() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
let v = cvt_p(ffi::BN_new())?;
Ok(BigNum::from_ptr(v))
}
}
/// Returns a new secure `BigNum`.
#[corresponds(BN_secure_new)]
#[cfg(ossl110)]
pub fn new_secure() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
let v = cvt_p(ffi::BN_secure_new())?;
Ok(BigNum::from_ptr(v))
}
}
/// Creates a new `BigNum` with the given value.
#[corresponds(BN_set_word)]
pub fn from_u32(n: u32) -> Result<BigNum, ErrorStack> {
BigNum::new().and_then(|v| unsafe {
cvt(ffi::BN_set_word(v.as_ptr(), n as ffi::BN_ULONG)).map(|_| v)
})
}
/// Creates a `BigNum` from a decimal string.
#[corresponds(BN_dec2bn)]
pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
let c_str = CString::new(s.as_bytes()).unwrap();
let mut bn = ptr::null_mut();
cvt(ffi::BN_dec2bn(&mut bn, c_str.as_ptr() as *const _))?;
Ok(BigNum::from_ptr(bn))
}
}
/// Creates a `BigNum` from a hexadecimal string.
#[corresponds(BN_hex2bn)]
pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
let c_str = CString::new(s.as_bytes()).unwrap();
let mut bn = ptr::null_mut();
cvt(ffi::BN_hex2bn(&mut bn, c_str.as_ptr() as *const _))?;
Ok(BigNum::from_ptr(bn))
}
}
/// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in
/// the order of magnitude of `2 ^ 768`. This number is used during calculated key
/// exchanges such as Diffie-Hellman. This number is labeled Oakley group id 1.
///
/// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21
#[corresponds(BN_get_rfc2409_prime_768)]
#[cfg(not(boringssl))]
pub fn get_rfc2409_prime_768() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
cvt_p(BN_get_rfc2409_prime_768(ptr::null_mut())).map(BigNum)
}
}
/// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in
/// the order of magnitude of `2 ^ 1024`. This number is used during calculated key
/// exchanges such as Diffie-Hellman. This number is labeled Oakly group 2.
///
/// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21
#[corresponds(BN_get_rfc2409_prime_1024)]
#[cfg(not(boringssl))]
pub fn get_rfc2409_prime_1024() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
cvt_p(BN_get_rfc2409_prime_1024(ptr::null_mut())).map(BigNum)
}
}
/// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order
/// of magnitude of `2 ^ 1536`. This number is used during calculated key
/// exchanges such as Diffie-Hellman. This number is labeled MODP group 5.
///
/// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3
#[corresponds(BN_get_rfc3526_prime_1536)]
#[cfg(not(boringssl))]
pub fn get_rfc3526_prime_1536() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
cvt_p(BN_get_rfc3526_prime_1536(ptr::null_mut())).map(BigNum)
}
}
/// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order
/// of magnitude of `2 ^ 2048`. This number is used during calculated key
/// exchanges such as Diffie-Hellman. This number is labeled MODP group 14.
///
/// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3
#[corresponds(BN_get_rfc3526_prime_2048)]
#[cfg(not(boringssl))]
pub fn get_rfc3526_prime_2048() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
cvt_p(BN_get_rfc3526_prime_2048(ptr::null_mut())).map(BigNum)
}
}
/// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order
/// of magnitude of `2 ^ 3072`. This number is used during calculated key
/// exchanges such as Diffie-Hellman. This number is labeled MODP group 15.
///
/// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4
#[corresponds(BN_get_rfc3526_prime_3072)]
#[cfg(not(boringssl))]
pub fn get_rfc3526_prime_3072() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
cvt_p(BN_get_rfc3526_prime_3072(ptr::null_mut())).map(BigNum)
}
}
/// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order
/// of magnitude of `2 ^ 4096`. This number is used during calculated key
/// exchanges such as Diffie-Hellman. This number is labeled MODP group 16.
///
/// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4
#[corresponds(BN_get_rfc3526_prime_4096)]
#[cfg(not(boringssl))]
pub fn get_rfc3526_prime_4096() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
cvt_p(BN_get_rfc3526_prime_4096(ptr::null_mut())).map(BigNum)
}
}
/// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order
/// of magnitude of `2 ^ 6144`. This number is used during calculated key
/// exchanges such as Diffie-Hellman. This number is labeled MODP group 17.
///
/// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6
#[corresponds(BN_get_rfc3526_prime_6114)]
#[cfg(not(boringssl))]
pub fn get_rfc3526_prime_6144() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
cvt_p(BN_get_rfc3526_prime_6144(ptr::null_mut())).map(BigNum)
}
}
/// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order
/// of magnitude of `2 ^ 8192`. This number is used during calculated key
/// exchanges such as Diffie-Hellman. This number is labeled MODP group 18.
///
/// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6
#[corresponds(BN_get_rfc3526_prime_8192)]
#[cfg(not(boringssl))]
pub fn get_rfc3526_prime_8192() -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
cvt_p(BN_get_rfc3526_prime_8192(ptr::null_mut())).map(BigNum)
}
}
/// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length.
///
/// OpenSSL documentation at [`BN_bin2bn`]
///
/// [`BN_bin2bn`]: https://www.openssl.org/docs/manmaster/crypto/BN_bin2bn.html
///
/// ```
/// # use openssl::bn::BigNum;
/// let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap();
///
/// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap());
/// ```
#[corresponds(BN_bin2bn)]
pub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack> {
unsafe {
ffi::init();
assert!(n.len() <= LenType::max_value() as usize);
cvt_p(ffi::BN_bin2bn(
n.as_ptr(),
n.len() as LenType,
ptr::null_mut(),
))
.map(|p| BigNum::from_ptr(p))
}
}
/// Copies data from a slice overwriting what was in the BigNum.
///
/// This function can be used to copy data from a slice to a
/// [secure BigNum][`BigNum::new_secure`].
///
/// # Examples
///
/// ```
/// # use openssl::bn::BigNum;
/// let mut bignum = BigNum::new().unwrap();
/// bignum.copy_from_slice(&[0x12, 0x00, 0x34]).unwrap();
///
/// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap());
/// ```
#[corresponds(BN_bin2bn)]
pub fn copy_from_slice(&mut self, n: &[u8]) -> Result<(), ErrorStack> {
unsafe {
assert!(n.len() <= LenType::max_value() as usize);
cvt_p(ffi::BN_bin2bn(n.as_ptr(), n.len() as LenType, self.0))?;
Ok(())
}
}
}
impl fmt::Debug for BigNumRef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.to_dec_str() {
Ok(s) => f.write_str(&s),
Err(e) => Err(e.into()),
}
}
}
impl fmt::Debug for BigNum {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.to_dec_str() {
Ok(s) => f.write_str(&s),
Err(e) => Err(e.into()),
}
}
}
impl fmt::Display for BigNumRef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.to_dec_str() {
Ok(s) => f.write_str(&s),
Err(e) => Err(e.into()),
}
}
}
impl fmt::Display for BigNum {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.to_dec_str() {
Ok(s) => f.write_str(&s),
Err(e) => Err(e.into()),
}
}
}
impl PartialEq<BigNumRef> for BigNumRef {
fn eq(&self, oth: &BigNumRef) -> bool {
self.cmp(oth) == Ordering::Equal
}
}
impl PartialEq<BigNum> for BigNumRef {
fn eq(&self, oth: &BigNum) -> bool {
self.eq(oth.deref())
}
}
impl Eq for BigNumRef {}
impl PartialEq for BigNum {
fn eq(&self, oth: &BigNum) -> bool {
self.deref().eq(oth)
}
}
impl PartialEq<BigNumRef> for BigNum {
fn eq(&self, oth: &BigNumRef) -> bool {
self.deref().eq(oth)
}
}
impl Eq for BigNum {}
impl PartialOrd<BigNumRef> for BigNumRef {
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
Some(self.cmp(oth))
}
}
impl PartialOrd<BigNum> for BigNumRef {
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
Some(self.cmp(oth.deref()))
}
}
impl Ord for BigNumRef {
fn cmp(&self, oth: &BigNumRef) -> Ordering {
unsafe { ffi::BN_cmp(self.as_ptr(), oth.as_ptr()).cmp(&0) }
}
}
impl PartialOrd for BigNum {
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
Some(self.cmp(oth))
}
}
impl PartialOrd<BigNumRef> for BigNum {
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
self.deref().partial_cmp(oth)
}
}
impl Ord for BigNum {
fn cmp(&self, oth: &BigNum) -> Ordering {
self.deref().cmp(oth.deref())
}
}
macro_rules! delegate {
($t:ident, $m:ident) => {
impl<'a, 'b> $t<&'b BigNum> for &'a BigNumRef {
type Output = BigNum;
fn $m(self, oth: &BigNum) -> BigNum {
$t::$m(self, oth.deref())
}
}
impl<'a, 'b> $t<&'b BigNumRef> for &'a BigNum {
type Output = BigNum;
fn $m(self, oth: &BigNumRef) -> BigNum {
$t::$m(self.deref(), oth)
}
}
impl<'a, 'b> $t<&'b BigNum> for &'a BigNum {
type Output = BigNum;
fn $m(self, oth: &BigNum) -> BigNum {
$t::$m(self.deref(), oth.deref())
}
}
};
}
impl<'a, 'b> Add<&'b BigNumRef> for &'a BigNumRef {
type Output = BigNum;
fn add(self, oth: &BigNumRef) -> BigNum {
let mut r = BigNum::new().unwrap();
r.checked_add(self, oth).unwrap();
r
}
}
delegate!(Add, add);
impl<'a, 'b> Sub<&'b BigNumRef> for &'a BigNumRef {
type Output = BigNum;
fn sub(self, oth: &BigNumRef) -> BigNum {
let mut r = BigNum::new().unwrap();
r.checked_sub(self, oth).unwrap();
r
}
}
delegate!(Sub, sub);
impl<'a, 'b> Mul<&'b BigNumRef> for &'a BigNumRef {
type Output = BigNum;
fn mul(self, oth: &BigNumRef) -> BigNum {
let mut ctx = BigNumContext::new().unwrap();
let mut r = BigNum::new().unwrap();
r.checked_mul(self, oth, &mut ctx).unwrap();
r
}
}
delegate!(Mul, mul);
impl<'a, 'b> Div<&'b BigNumRef> for &'a BigNumRef {
type Output = BigNum;
fn div(self, oth: &'b BigNumRef) -> BigNum {
let mut ctx = BigNumContext::new().unwrap();
let mut r = BigNum::new().unwrap();
r.checked_div(self, oth, &mut ctx).unwrap();
r
}
}
delegate!(Div, div);
impl<'a, 'b> Rem<&'b BigNumRef> for &'a BigNumRef {
type Output = BigNum;
fn rem(self, oth: &'b BigNumRef) -> BigNum {
let mut ctx = BigNumContext::new().unwrap();
let mut r = BigNum::new().unwrap();
r.checked_rem(self, oth, &mut ctx).unwrap();
r
}
}
delegate!(Rem, rem);
impl<'a> Shl<i32> for &'a BigNumRef {
type Output = BigNum;
fn shl(self, n: i32) -> BigNum {
let mut r = BigNum::new().unwrap();
r.lshift(self, n).unwrap();
r
}
}
impl<'a> Shl<i32> for &'a BigNum {
type Output = BigNum;
fn shl(self, n: i32) -> BigNum {
self.deref().shl(n)
}
}
impl<'a> Shr<i32> for &'a BigNumRef {
type Output = BigNum;
fn shr(self, n: i32) -> BigNum {
let mut r = BigNum::new().unwrap();
r.rshift(self, n).unwrap();
r
}
}
impl<'a> Shr<i32> for &'a BigNum {
type Output = BigNum;
fn shr(self, n: i32) -> BigNum {
self.deref().shr(n)
}
}
impl<'a> Neg for &'a BigNumRef {
type Output = BigNum;
fn neg(self) -> BigNum {
self.to_owned().unwrap().neg()
}
}
impl<'a> Neg for &'a BigNum {
type Output = BigNum;
fn neg(self) -> BigNum {
self.deref().neg()
}
}
impl Neg for BigNum {
type Output = BigNum;
fn neg(mut self) -> BigNum {
let negative = self.is_negative();
self.set_negative(!negative);
self
}
}
#[cfg(test)]
mod tests {
use crate::bn::{BigNum, BigNumContext};
#[test]
fn test_to_from_slice() {
let v0 = BigNum::from_u32(10_203_004).unwrap();
let vec = v0.to_vec();
let v1 = BigNum::from_slice(&vec).unwrap();
assert_eq!(v0, v1);
}
#[test]
fn test_negation() {
let a = BigNum::from_u32(909_829_283).unwrap();
assert!(!a.is_negative());
assert!((-a).is_negative());
}
#[test]
fn test_shift() {
let a = BigNum::from_u32(909_829_283).unwrap();
assert_eq!(a, &(&a << 1) >> 1);
}
#[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
#[test]
fn test_rand_range() {
let range = BigNum::from_u32(909_829_283).unwrap();
let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap();
range.rand_range(&mut result).unwrap();
assert!(result >= BigNum::from_u32(0).unwrap() && result < range);
}
#[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
#[test]
fn test_pseudo_rand_range() {
let range = BigNum::from_u32(909_829_283).unwrap();
let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap();
range.pseudo_rand_range(&mut result).unwrap();
assert!(result >= BigNum::from_u32(0).unwrap() && result < range);
}
#[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
#[test]
fn test_prime_numbers() {
let a = BigNum::from_u32(19_029_017).unwrap();
let mut p = BigNum::new().unwrap();
p.generate_prime(128, true, None, Some(&a)).unwrap();
let mut ctx = BigNumContext::new().unwrap();
assert!(p.is_prime(100, &mut ctx).unwrap());
assert!(p.is_prime_fasttest(100, &mut ctx, true).unwrap());
}
#[cfg(ossl110)]
#[test]
fn test_secure_bn_ctx() {
let mut cxt = BigNumContext::new_secure().unwrap();
let a = BigNum::from_u32(8).unwrap();
let b = BigNum::from_u32(3).unwrap();
let mut remainder = BigNum::new().unwrap();
remainder.nnmod(&a, &b, &mut cxt).unwrap();
assert!(remainder.eq(&BigNum::from_u32(2).unwrap()));
}
#[cfg(ossl110)]
#[test]
fn test_secure_bn() {
let a = BigNum::new().unwrap();
assert!(!a.is_secure());
let b = BigNum::new_secure().unwrap();
assert!(b.is_secure())
}
#[cfg(ossl110)]
#[test]
fn test_const_time_bn() {
let a = BigNum::new().unwrap();
assert!(!a.is_const_time());
let mut b = BigNum::new().unwrap();
b.set_const_time();
assert!(b.is_const_time())
}
#[test]
fn test_mod_sqrt() {
let mut ctx = BigNumContext::new().unwrap();
let s = BigNum::from_hex_str("2").unwrap();
let p = BigNum::from_hex_str("7DEB1").unwrap();
let mut sqrt = BigNum::new().unwrap();
let mut out = BigNum::new().unwrap();
// Square the root because OpenSSL randomly returns one of 2E42C or 4FA85
sqrt.mod_sqrt(&s, &p, &mut ctx).unwrap();
out.mod_sqr(&sqrt, &p, &mut ctx).unwrap();
assert!(out == s);
let s = BigNum::from_hex_str("3").unwrap();
let p = BigNum::from_hex_str("5").unwrap();
assert!(out.mod_sqrt(&s, &p, &mut ctx).is_err());
}
#[test]
#[cfg(any(ossl110, boringssl, libressl350))]
fn test_odd_even() {
let a = BigNum::from_u32(17).unwrap();
let b = BigNum::from_u32(18).unwrap();
assert!(a.is_odd());
assert!(!b.is_odd());
assert!(!a.is_even());
assert!(b.is_even());
}
}