1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//! Low level Elliptic Curve Digital Signature Algorithm (ECDSA) functions.

use cfg_if::cfg_if;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::c_int;
use std::mem;
use std::ptr;

use crate::bn::{BigNum, BigNumRef};
use crate::ec::EcKeyRef;
use crate::error::ErrorStack;
use crate::pkey::{HasPrivate, HasPublic};
use crate::util::ForeignTypeRefExt;
use crate::{cvt_n, cvt_p, LenType};
use openssl_macros::corresponds;

foreign_type_and_impl_send_sync! {
    type CType = ffi::ECDSA_SIG;
    fn drop = ffi::ECDSA_SIG_free;

    /// A low level interface to ECDSA.
    pub struct EcdsaSig;
    /// A reference to an [`EcdsaSig`].
    pub struct EcdsaSigRef;
}

impl EcdsaSig {
    /// Computes a digital signature of the hash value `data` using the private EC key eckey.
    #[corresponds(ECDSA_do_sign)]
    pub fn sign<T>(data: &[u8], eckey: &EcKeyRef<T>) -> Result<EcdsaSig, ErrorStack>
    where
        T: HasPrivate,
    {
        unsafe {
            assert!(data.len() <= c_int::max_value() as usize);
            let sig = cvt_p(ffi::ECDSA_do_sign(
                data.as_ptr(),
                data.len() as LenType,
                eckey.as_ptr(),
            ))?;
            Ok(EcdsaSig::from_ptr(sig))
        }
    }

    /// Returns a new `EcdsaSig` by setting the `r` and `s` values associated with an ECDSA signature.
    #[corresponds(ECDSA_SIG_set0)]
    pub fn from_private_components(r: BigNum, s: BigNum) -> Result<EcdsaSig, ErrorStack> {
        unsafe {
            let sig = cvt_p(ffi::ECDSA_SIG_new())?;
            ECDSA_SIG_set0(sig, r.as_ptr(), s.as_ptr());
            mem::forget((r, s));
            Ok(EcdsaSig::from_ptr(sig))
        }
    }

    from_der! {
        /// Decodes a DER-encoded ECDSA signature.
        #[corresponds(d2i_ECDSA_SIG)]
        from_der,
        EcdsaSig,
        ffi::d2i_ECDSA_SIG
    }
}

impl EcdsaSigRef {
    to_der! {
        /// Serializes the ECDSA signature into a DER-encoded ECDSASignature structure.
        #[corresponds(i2d_ECDSA_SIG)]
        to_der,
        ffi::i2d_ECDSA_SIG
    }

    /// Verifies if the signature is a valid ECDSA signature using the given public key.
    #[corresponds(ECDSA_do_verify)]
    pub fn verify<T>(&self, data: &[u8], eckey: &EcKeyRef<T>) -> Result<bool, ErrorStack>
    where
        T: HasPublic,
    {
        unsafe {
            assert!(data.len() <= c_int::max_value() as usize);
            cvt_n(ffi::ECDSA_do_verify(
                data.as_ptr(),
                data.len() as LenType,
                self.as_ptr(),
                eckey.as_ptr(),
            ))
            .map(|x| x == 1)
        }
    }

    /// Returns internal component: `r` of an `EcdsaSig`. (See X9.62 or FIPS 186-2)
    #[corresponds(ECDSA_SIG_get0)]
    pub fn r(&self) -> &BigNumRef {
        unsafe {
            let mut r = ptr::null();
            ECDSA_SIG_get0(self.as_ptr(), &mut r, ptr::null_mut());
            BigNumRef::from_const_ptr(r)
        }
    }

    /// Returns internal components: `s` of an `EcdsaSig`. (See X9.62 or FIPS 186-2)
    #[corresponds(ECDSA_SIG_get0)]
    pub fn s(&self) -> &BigNumRef {
        unsafe {
            let mut s = ptr::null();
            ECDSA_SIG_get0(self.as_ptr(), ptr::null_mut(), &mut s);
            BigNumRef::from_const_ptr(s)
        }
    }
}

cfg_if! {
    if #[cfg(any(ossl110, libressl273, boringssl))] {
        use ffi::{ECDSA_SIG_set0, ECDSA_SIG_get0};
    } else {
        #[allow(bad_style)]
        unsafe fn ECDSA_SIG_set0(
            sig: *mut ffi::ECDSA_SIG,
            r: *mut ffi::BIGNUM,
            s: *mut ffi::BIGNUM,
        ) -> c_int {
            if r.is_null() || s.is_null() {
                return 0;
            }
            ffi::BN_clear_free((*sig).r);
            ffi::BN_clear_free((*sig).s);
            (*sig).r = r;
            (*sig).s = s;
            1
        }

        #[allow(bad_style)]
        unsafe fn ECDSA_SIG_get0(
            sig: *const ffi::ECDSA_SIG,
            pr: *mut *const ffi::BIGNUM,
            ps: *mut *const ffi::BIGNUM)
        {
            if !pr.is_null() {
                (*pr) = (*sig).r;
            }
            if !ps.is_null() {
                (*ps) = (*sig).s;
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::ec::EcGroup;
    use crate::ec::EcKey;
    use crate::nid::Nid;
    use crate::pkey::{Private, Public};

    fn get_public_key(group: &EcGroup, x: &EcKey<Private>) -> Result<EcKey<Public>, ErrorStack> {
        EcKey::from_public_key(group, x.public_key())
    }

    #[test]
    #[cfg_attr(osslconf = "OPENSSL_NO_EC", ignore)]
    fn sign_and_verify() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let private_key = EcKey::generate(&group).unwrap();
        let public_key = get_public_key(&group, &private_key).unwrap();

        let private_key2 = EcKey::generate(&group).unwrap();
        let public_key2 = get_public_key(&group, &private_key2).unwrap();

        let data = String::from("hello");
        let res = EcdsaSig::sign(data.as_bytes(), &private_key).unwrap();

        // Signature can be verified using the correct data & correct public key
        let verification = res.verify(data.as_bytes(), &public_key).unwrap();
        assert!(verification);

        // Signature will not be verified using the incorrect data but the correct public key
        let verification2 = res
            .verify(String::from("hello2").as_bytes(), &public_key)
            .unwrap();
        assert!(!verification2);

        // Signature will not be verified using the correct data but the incorrect public key
        let verification3 = res.verify(data.as_bytes(), &public_key2).unwrap();
        assert!(!verification3);
    }

    #[test]
    #[cfg_attr(osslconf = "OPENSSL_NO_EC", ignore)]
    fn check_private_components() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let private_key = EcKey::generate(&group).unwrap();
        let public_key = get_public_key(&group, &private_key).unwrap();
        let data = String::from("hello");
        let res = EcdsaSig::sign(data.as_bytes(), &private_key).unwrap();

        let verification = res.verify(data.as_bytes(), &public_key).unwrap();
        assert!(verification);

        let r = res.r().to_owned().unwrap();
        let s = res.s().to_owned().unwrap();

        let res2 = EcdsaSig::from_private_components(r, s).unwrap();
        let verification2 = res2.verify(data.as_bytes(), &public_key).unwrap();
        assert!(verification2);
    }

    #[test]
    #[cfg_attr(osslconf = "OPENSSL_NO_EC", ignore)]
    fn serialize_deserialize() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let private_key = EcKey::generate(&group).unwrap();
        let public_key = get_public_key(&group, &private_key).unwrap();

        let data = String::from("hello");
        let res = EcdsaSig::sign(data.as_bytes(), &private_key).unwrap();

        let der = res.to_der().unwrap();
        let sig = EcdsaSig::from_der(&der).unwrap();

        let verification = sig.verify(data.as_bytes(), &public_key).unwrap();
        assert!(verification);
    }
}