1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
use crate::bounding_volume::BoundingVolume;
use crate::math::{Isometry, Real};
use crate::query::contact_manifolds::contact_manifolds_workspace::{
    TypedWorkspaceData, WorkspaceData,
};
use crate::query::contact_manifolds::ContactManifoldsWorkspace;
use crate::query::query_dispatcher::PersistentQueryDispatcher;
use crate::query::visitors::BoundingVolumeIntersectionsVisitor;
use crate::query::ContactManifold;
use crate::shape::{Shape, SimdCompositeShape};
use crate::utils::hashmap::{Entry, HashMap};
use crate::utils::IsometryOpt;

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[derive(Clone)]
struct SubDetector {
    manifold_id: usize,
    timestamp: bool,
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Default)]
pub struct CompositeShapeShapeContactManifoldsWorkspace {
    timestamp: bool,
    sub_detectors: HashMap<u32, SubDetector>,
}

impl CompositeShapeShapeContactManifoldsWorkspace {
    pub fn new() -> Self {
        Self::default()
    }
}

fn ensure_workspace_exists(workspace: &mut Option<ContactManifoldsWorkspace>) {
    if workspace
        .as_ref()
        .and_then(|w| {
            w.0.downcast_ref::<CompositeShapeShapeContactManifoldsWorkspace>()
        })
        .is_some()
    {
        return;
    }

    *workspace = Some(ContactManifoldsWorkspace(Box::new(
        CompositeShapeShapeContactManifoldsWorkspace::new(),
    )));
}

/// Computes the contact manifolds between a composite shape and an abstract shape.
pub fn contact_manifolds_composite_shape_shape<ManifoldData, ContactData>(
    dispatcher: &dyn PersistentQueryDispatcher<ManifoldData, ContactData>,
    pos12: &Isometry<Real>,
    composite1: &dyn SimdCompositeShape,
    shape2: &dyn Shape,
    prediction: Real,
    manifolds: &mut Vec<ContactManifold<ManifoldData, ContactData>>,
    workspace: &mut Option<ContactManifoldsWorkspace>,
    flipped: bool,
) where
    ManifoldData: Default + Clone,
    ContactData: Default + Copy,
{
    ensure_workspace_exists(workspace);
    let workspace: &mut CompositeShapeShapeContactManifoldsWorkspace =
        workspace.as_mut().unwrap().0.downcast_mut().unwrap();
    let new_timestamp = !workspace.timestamp;
    workspace.timestamp = new_timestamp;

    /*
     * Compute interferences.
     */

    let pos12 = *pos12;
    let pos21 = pos12.inverse();

    // Traverse qbvh1 first.
    let ls_aabb2_1 = shape2.compute_aabb(&pos12).loosened(prediction);
    let mut old_manifolds = std::mem::take(manifolds);

    let mut leaf1_fn = |leaf1: &u32| {
        composite1.map_part_at(*leaf1, &mut |part_pos1, part_shape1| {
            let sub_detector = match workspace.sub_detectors.entry(*leaf1) {
                Entry::Occupied(entry) => {
                    let sub_detector = entry.into_mut();
                    let manifold = old_manifolds[sub_detector.manifold_id].take();
                    sub_detector.manifold_id = manifolds.len();
                    sub_detector.timestamp = new_timestamp;
                    manifolds.push(manifold);
                    sub_detector
                }
                Entry::Vacant(entry) => {
                    let sub_detector = SubDetector {
                        manifold_id: manifolds.len(),
                        timestamp: new_timestamp,
                    };

                    let mut manifold = ContactManifold::new();

                    if flipped {
                        manifold.subshape1 = 0;
                        manifold.subshape2 = *leaf1;
                        manifold.subshape_pos2 = part_pos1.copied();
                    } else {
                        manifold.subshape1 = *leaf1;
                        manifold.subshape2 = 0;
                        manifold.subshape_pos1 = part_pos1.copied();
                    };

                    manifolds.push(manifold);
                    entry.insert(sub_detector)
                }
            };

            let manifold = &mut manifolds[sub_detector.manifold_id];

            if flipped {
                let _ = dispatcher.contact_manifold_convex_convex(
                    &part_pos1.prepend_to(&pos21),
                    shape2,
                    part_shape1,
                    prediction,
                    manifold,
                );
            } else {
                let _ = dispatcher.contact_manifold_convex_convex(
                    &part_pos1.inv_mul(&pos12),
                    part_shape1,
                    shape2,
                    prediction,
                    manifold,
                );
            }
        });

        true
    };

    let mut visitor1 = BoundingVolumeIntersectionsVisitor::new(&ls_aabb2_1, &mut leaf1_fn);
    let _ = composite1.qbvh().traverse_depth_first(&mut visitor1);

    workspace
        .sub_detectors
        .retain(|_, detector| detector.timestamp == new_timestamp)
}

impl WorkspaceData for CompositeShapeShapeContactManifoldsWorkspace {
    fn as_typed_workspace_data(&self) -> TypedWorkspaceData {
        TypedWorkspaceData::CompositeShapeShapeContactManifoldsWorkspace(self)
    }

    fn clone_dyn(&self) -> Box<dyn WorkspaceData> {
        Box::new(self.clone())
    }
}