1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
use crate::math::{Point, Real, Vector};
use crate::shape::{FeatureId, PackedFeatureId, PolygonalFeature, PolygonalFeatureMap, SupportMap};
use crate::utils;
use na::{self, ComplexField, RealField, Unit};
/// A 2D convex polygon.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
archive(check_bytes)
)]
#[derive(Clone, Debug)]
pub struct ConvexPolygon {
points: Vec<Point<Real>>,
normals: Vec<Unit<Vector<Real>>>,
}
impl ConvexPolygon {
/// Creates a new 2D convex polygon from an arbitrary set of points.
///
/// This explicitly computes the convex hull of the given set of points.
/// Returns `None` if the convex hull computation failed.
pub fn from_convex_hull(points: &[Point<Real>]) -> Option<Self> {
let vertices = crate::transformation::convex_hull(points);
Self::from_convex_polyline(vertices)
}
/// Creates a new 2D convex polygon from a set of points assumed to
/// describe a counter-clockwise convex polyline.
///
/// Convexity of the input polyline is not checked.
/// Returns `None` if all points form an almost flat line.
pub fn from_convex_polyline(mut points: Vec<Point<Real>>) -> Option<Self> {
let eps = ComplexField::sqrt(crate::math::DEFAULT_EPSILON);
let mut normals = Vec::with_capacity(points.len());
// First, compute all normals.
for i1 in 0..points.len() {
let i2 = (i1 + 1) % points.len();
normals.push(utils::ccw_face_normal([&points[i1], &points[i2]])?);
}
let mut nremoved = 0;
// See if the first vertex must be removed.
if normals[0].dot(&*normals[normals.len() - 1]) > 1.0 - eps {
nremoved = 1;
}
// Second, find vertices that can be removed because
// of collinearity of adjascent faces.
for i2 in 1..points.len() {
let i1 = i2 - 1;
if normals[i1].dot(&*normals[i2]) > 1.0 - eps {
// Remove
nremoved += 1;
} else {
points[i2 - nremoved] = points[i2];
normals[i2 - nremoved] = normals[i2];
}
}
let new_length = points.len() - nremoved;
points.truncate(new_length);
normals.truncate(new_length);
if !points.is_empty() {
Some(ConvexPolygon { points, normals })
} else {
None
}
}
/// The vertices of this convex polygon.
#[inline]
pub fn points(&self) -> &[Point<Real>] {
&self.points
}
/// The normals of the edges of this convex polygon.
#[inline]
pub fn normals(&self) -> &[Unit<Vector<Real>>] {
&self.normals
}
/// Computes a scaled version of this convex polygon.
///
/// Returns `None` if the result had degenerate normals (for example if
/// the scaling factor along one axis is zero).
pub fn scaled(mut self, scale: &Vector<Real>) -> Option<Self> {
self.points
.iter_mut()
.for_each(|pt| pt.coords.component_mul_assign(scale));
for n in &mut self.normals {
*n = Unit::try_new(n.component_mul(scale), 0.0)?;
}
Some(self)
}
/// Returns a mitered offset of the polygon.
///
/// # Arguments
///
/// * `amount` - size of the inflation. Each edge is moved outwards by this
/// amount.
///
/// # Panics
///
/// Panics if `amount` is not a non-negative finite number.
pub fn offsetted(&self, amount: Real) -> Self {
if !amount.is_finite() || amount < 0. {
panic!(
"Offset amount must be a non-negative finite number, got {}.",
amount
);
}
let mut points = Vec::with_capacity(self.points.len());
let normals = self.normals.clone();
for i2 in 0..self.points.len() {
let i1 = if i2 == 0 {
self.points.len() - 1
} else {
i2 - 1
};
let normal_a = normals[i1];
let direction = normal_a.into_inner() + normals[i2].into_inner();
points.push(self.points[i2] + (amount / direction.dot(&normal_a)) * direction);
}
ConvexPolygon { points, normals }
}
/// Get the ID of the feature with a normal that maximizes the dot product with `local_dir`.
pub fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
let eps: Real = Real::pi() / 180.0;
let ceps = ComplexField::cos(eps);
// Check faces.
for i in 0..self.normals.len() {
let normal = &self.normals[i];
if normal.dot(local_dir.as_ref()) >= ceps {
return FeatureId::Face(i as u32);
}
}
// Support vertex.
FeatureId::Vertex(
utils::point_cloud_support_point_id(local_dir.as_ref(), &self.points) as u32,
)
}
/// The normal of the given feature.
pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>> {
match feature {
FeatureId::Face(id) => Some(self.normals[id as usize]),
FeatureId::Vertex(id2) => {
let id1 = if id2 == 0 {
self.normals.len() - 1
} else {
id2 as usize - 1
};
Some(Unit::new_normalize(
*self.normals[id1] + *self.normals[id2 as usize],
))
}
_ => None,
}
}
}
impl SupportMap for ConvexPolygon {
#[inline]
fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real> {
utils::point_cloud_support_point(dir, self.points())
}
}
impl PolygonalFeatureMap for ConvexPolygon {
fn local_support_feature(&self, dir: &Unit<Vector<Real>>, out_feature: &mut PolygonalFeature) {
let cuboid = crate::shape::Cuboid::new(self.points[2].coords);
cuboid.local_support_feature(dir, out_feature);
let mut best_face = 0;
let mut max_dot = self.normals[0].dot(dir);
for i in 1..self.normals.len() {
let dot = self.normals[i].dot(dir);
if dot > max_dot {
max_dot = dot;
best_face = i;
}
}
let i1 = best_face;
let i2 = (best_face + 1) % self.points.len();
*out_feature = PolygonalFeature {
vertices: [self.points[i1], self.points[i2]],
vids: PackedFeatureId::vertices([i1 as u32 * 2, i2 as u32 * 2]),
fid: PackedFeatureId::face(i1 as u32 * 2 + 1),
num_vertices: 2,
};
}
}
/*
impl ConvexPolyhedron for ConvexPolygon {
fn vertex(&self, id: FeatureId) -> Point<Real> {
self.points[id.unwrap_vertex() as usize]
}
fn face(&self, id: FeatureId, out: &mut ConvexPolygonalFeature) {
out.clear();
let ia = id.unwrap_face() as usize;
let ib = (ia + 1) % self.points.len();
out.push(self.points[ia], FeatureId::Vertex(ia as u32));
out.push(self.points[ib], FeatureId::Vertex(ib as u32));
out.set_normal(self.normals[ia as usize]);
out.set_feature_id(FeatureId::Face(ia as u32));
}
fn support_face_toward(
&self,
m: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
out: &mut ConvexPolygonalFeature,
) {
let ls_dir = m.inverse_transform_vector(dir);
let mut best_face = 0;
let mut max_dot = self.normals[0].dot(&ls_dir);
for i in 1..self.points.len() {
let dot = self.normals[i].dot(&ls_dir);
if dot > max_dot {
max_dot = dot;
best_face = i;
}
}
self.face(FeatureId::Face(best_face as u32), out);
out.transform_by(m);
}
fn support_feature_toward(
&self,
transform: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
_angle: Real,
out: &mut ConvexPolygonalFeature,
) {
out.clear();
// FIXME: actualy find the support feature.
self.support_face_toward(transform, dir, out)
}
fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
let eps: Real = na::convert::<f64, Real>(f64::consts::PI / 180.0);
let ceps = ComplexField::cos(eps);
// Check faces.
for i in 0..self.normals.len() {
let normal = &self.normals[i];
if normal.dot(local_dir.as_ref()) >= ceps {
return FeatureId::Face(i as u32);
}
}
// Support vertex.
FeatureId::Vertex(
utils::point_cloud_support_point_id(local_dir.as_ref(), &self.points) as u32,
)
}
}
*/
#[cfg(feature = "dim2")]
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_dilation() {
let polygon = ConvexPolygon::from_convex_polyline(vec![
Point::new(1., 0.),
Point::new(-1., 0.),
Point::new(0., -1.),
])
.unwrap();
let offsetted = polygon.offsetted(0.5);
let expected = vec![
Point::new(2.207, 0.5),
Point::new(-2.207, 0.5),
Point::new(0., -1.707),
];
assert_eq!(offsetted.points().len(), 3);
assert!(offsetted
.points()
.iter()
.zip(expected.iter())
.all(|(a, b)| (a.coords - b.coords).magnitude() < 0.001));
}
}