1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
use crate::math::{Point, Real, Vector};
use crate::shape::{FeatureId, PackedFeatureId, PolygonalFeature, PolygonalFeatureMap, SupportMap};
use crate::utils;
use na::{self, ComplexField, RealField, Unit};

/// A 2D convex polygon.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[derive(Clone, Debug)]
pub struct ConvexPolygon {
    points: Vec<Point<Real>>,
    normals: Vec<Unit<Vector<Real>>>,
}

impl ConvexPolygon {
    /// Creates a new 2D convex polygon from an arbitrary set of points.
    ///
    /// This explicitly computes the convex hull of the given set of points.
    /// Returns `None` if the convex hull computation failed.
    pub fn from_convex_hull(points: &[Point<Real>]) -> Option<Self> {
        let vertices = crate::transformation::convex_hull(points);
        Self::from_convex_polyline(vertices)
    }

    /// Creates a new 2D convex polygon from a set of points assumed to
    /// describe a counter-clockwise convex polyline.
    ///
    /// Convexity of the input polyline is not checked.
    /// Returns `None` if all points form an almost flat line.
    pub fn from_convex_polyline(mut points: Vec<Point<Real>>) -> Option<Self> {
        let eps = ComplexField::sqrt(crate::math::DEFAULT_EPSILON);
        let mut normals = Vec::with_capacity(points.len());

        // First, compute all normals.
        for i1 in 0..points.len() {
            let i2 = (i1 + 1) % points.len();
            normals.push(utils::ccw_face_normal([&points[i1], &points[i2]])?);
        }

        let mut nremoved = 0;
        // See if the first vertex must be removed.
        if normals[0].dot(&*normals[normals.len() - 1]) > 1.0 - eps {
            nremoved = 1;
        }

        // Second, find vertices that can be removed because
        // of collinearity of adjascent faces.
        for i2 in 1..points.len() {
            let i1 = i2 - 1;
            if normals[i1].dot(&*normals[i2]) > 1.0 - eps {
                // Remove
                nremoved += 1;
            } else {
                points[i2 - nremoved] = points[i2];
                normals[i2 - nremoved] = normals[i2];
            }
        }

        let new_length = points.len() - nremoved;
        points.truncate(new_length);
        normals.truncate(new_length);

        if !points.is_empty() {
            Some(ConvexPolygon { points, normals })
        } else {
            None
        }
    }

    /// The vertices of this convex polygon.
    #[inline]
    pub fn points(&self) -> &[Point<Real>] {
        &self.points
    }

    /// The normals of the edges of this convex polygon.
    #[inline]
    pub fn normals(&self) -> &[Unit<Vector<Real>>] {
        &self.normals
    }

    /// Computes a scaled version of this convex polygon.
    ///
    /// Returns `None` if the result had degenerate normals (for example if
    /// the scaling factor along one axis is zero).
    pub fn scaled(mut self, scale: &Vector<Real>) -> Option<Self> {
        self.points
            .iter_mut()
            .for_each(|pt| pt.coords.component_mul_assign(scale));

        for n in &mut self.normals {
            *n = Unit::try_new(n.component_mul(scale), 0.0)?;
        }

        Some(self)
    }

    /// Returns a mitered offset of the polygon.
    ///
    /// # Arguments
    ///
    /// * `amount` - size of the inflation. Each edge is moved outwards by this
    ///   amount.
    ///
    /// # Panics
    ///
    /// Panics if `amount` is not a non-negative finite number.
    pub fn offsetted(&self, amount: Real) -> Self {
        if !amount.is_finite() || amount < 0. {
            panic!(
                "Offset amount must be a non-negative finite number, got {}.",
                amount
            );
        }

        let mut points = Vec::with_capacity(self.points.len());
        let normals = self.normals.clone();

        for i2 in 0..self.points.len() {
            let i1 = if i2 == 0 {
                self.points.len() - 1
            } else {
                i2 - 1
            };
            let normal_a = normals[i1];
            let direction = normal_a.into_inner() + normals[i2].into_inner();
            points.push(self.points[i2] + (amount / direction.dot(&normal_a)) * direction);
        }

        ConvexPolygon { points, normals }
    }

    /// Get the ID of the feature with a normal that maximizes the dot product with `local_dir`.
    pub fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
        let eps: Real = Real::pi() / 180.0;
        let ceps = ComplexField::cos(eps);

        // Check faces.
        for i in 0..self.normals.len() {
            let normal = &self.normals[i];

            if normal.dot(local_dir.as_ref()) >= ceps {
                return FeatureId::Face(i as u32);
            }
        }

        // Support vertex.
        FeatureId::Vertex(
            utils::point_cloud_support_point_id(local_dir.as_ref(), &self.points) as u32,
        )
    }

    /// The normal of the given feature.
    pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>> {
        match feature {
            FeatureId::Face(id) => Some(self.normals[id as usize]),
            FeatureId::Vertex(id2) => {
                let id1 = if id2 == 0 {
                    self.normals.len() - 1
                } else {
                    id2 as usize - 1
                };
                Some(Unit::new_normalize(
                    *self.normals[id1] + *self.normals[id2 as usize],
                ))
            }
            _ => None,
        }
    }
}

impl SupportMap for ConvexPolygon {
    #[inline]
    fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real> {
        utils::point_cloud_support_point(dir, self.points())
    }
}

impl PolygonalFeatureMap for ConvexPolygon {
    fn local_support_feature(&self, dir: &Unit<Vector<Real>>, out_feature: &mut PolygonalFeature) {
        let cuboid = crate::shape::Cuboid::new(self.points[2].coords);
        cuboid.local_support_feature(dir, out_feature);
        let mut best_face = 0;
        let mut max_dot = self.normals[0].dot(dir);

        for i in 1..self.normals.len() {
            let dot = self.normals[i].dot(dir);

            if dot > max_dot {
                max_dot = dot;
                best_face = i;
            }
        }

        let i1 = best_face;
        let i2 = (best_face + 1) % self.points.len();
        *out_feature = PolygonalFeature {
            vertices: [self.points[i1], self.points[i2]],
            vids: PackedFeatureId::vertices([i1 as u32 * 2, i2 as u32 * 2]),
            fid: PackedFeatureId::face(i1 as u32 * 2 + 1),
            num_vertices: 2,
        };
    }
}

/*
impl ConvexPolyhedron for ConvexPolygon {
    fn vertex(&self, id: FeatureId) -> Point<Real> {
        self.points[id.unwrap_vertex() as usize]
    }

    fn face(&self, id: FeatureId, out: &mut ConvexPolygonalFeature) {
        out.clear();

        let ia = id.unwrap_face() as usize;
        let ib = (ia + 1) % self.points.len();
        out.push(self.points[ia], FeatureId::Vertex(ia as u32));
        out.push(self.points[ib], FeatureId::Vertex(ib as u32));

        out.set_normal(self.normals[ia as usize]);
        out.set_feature_id(FeatureId::Face(ia as u32));
    }



    fn support_face_toward(
        &self,
        m: &Isometry<Real>,
        dir: &Unit<Vector<Real>>,
        out: &mut ConvexPolygonalFeature,
    ) {
        let ls_dir = m.inverse_transform_vector(dir);
        let mut best_face = 0;
        let mut max_dot = self.normals[0].dot(&ls_dir);

        for i in 1..self.points.len() {
            let dot = self.normals[i].dot(&ls_dir);

            if dot > max_dot {
                max_dot = dot;
                best_face = i;
            }
        }

        self.face(FeatureId::Face(best_face as u32), out);
        out.transform_by(m);
    }

    fn support_feature_toward(
        &self,
        transform: &Isometry<Real>,
        dir: &Unit<Vector<Real>>,
        _angle: Real,
        out: &mut ConvexPolygonalFeature,
    ) {
        out.clear();
        // FIXME: actualy find the support feature.
        self.support_face_toward(transform, dir, out)
    }

    fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
        let eps: Real = na::convert::<f64, Real>(f64::consts::PI / 180.0);
        let ceps = ComplexField::cos(eps);

        // Check faces.
        for i in 0..self.normals.len() {
            let normal = &self.normals[i];

            if normal.dot(local_dir.as_ref()) >= ceps {
                return FeatureId::Face(i as u32);
            }
        }

        // Support vertex.
        FeatureId::Vertex(
            utils::point_cloud_support_point_id(local_dir.as_ref(), &self.points) as u32,
        )
    }
}
*/

#[cfg(feature = "dim2")]
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_dilation() {
        let polygon = ConvexPolygon::from_convex_polyline(vec![
            Point::new(1., 0.),
            Point::new(-1., 0.),
            Point::new(0., -1.),
        ])
        .unwrap();

        let offsetted = polygon.offsetted(0.5);
        let expected = vec![
            Point::new(2.207, 0.5),
            Point::new(-2.207, 0.5),
            Point::new(0., -1.707),
        ];

        assert_eq!(offsetted.points().len(), 3);
        assert!(offsetted
            .points()
            .iter()
            .zip(expected.iter())
            .all(|(a, b)| (a.coords - b.coords).magnitude() < 0.001));
    }
}