use crate::mass_properties::MassProperties;
use crate::math::{Matrix, Point, Real, DIM};
use crate::shape::Tetrahedron;
use num::Zero;
impl MassProperties {
pub fn from_trimesh(
density: Real,
vertices: &[Point<Real>],
indices: &[[u32; DIM]],
) -> MassProperties {
let (volume, com) = trimesh_signed_volume_and_center_of_mass(vertices, indices);
if volume.is_zero() {
return MassProperties::zero();
}
let mut itot = Matrix::zeros();
for t in indices {
let p2 = &vertices[t[0] as usize];
let p3 = &vertices[t[1] as usize];
let p4 = &vertices[t[2] as usize];
let vol = Tetrahedron::new(com, *p2, *p3, *p4).signed_volume();
let ipart = tetrahedron_unit_inertia_tensor_wrt_point(&com, &com, p2, p3, p4);
itot += ipart * vol;
}
let sign = volume.signum();
Self::with_inertia_matrix(com, volume * density * sign, itot * density * sign)
}
}
pub fn tetrahedron_unit_inertia_tensor_wrt_point(
point: &Point<Real>,
p1: &Point<Real>,
p2: &Point<Real>,
p3: &Point<Real>,
p4: &Point<Real>,
) -> Matrix<Real> {
let p1 = p1 - point;
let p2 = p2 - point;
let p3 = p3 - point;
let p4 = p4 - point;
let x1 = p1[0];
let y1 = p1[1];
let z1 = p1[2];
let x2 = p2[0];
let y2 = p2[1];
let z2 = p2[2];
let x3 = p3[0];
let y3 = p3[1];
let z3 = p3[2];
let x4 = p4[0];
let y4 = p4[1];
let z4 = p4[2];
let diag_x = x1 * x1
+ x1 * x2
+ x2 * x2
+ x1 * x3
+ x2 * x3
+ x3 * x3
+ x1 * x4
+ x2 * x4
+ x3 * x4
+ x4 * x4;
let diag_y = y1 * y1
+ y1 * y2
+ y2 * y2
+ y1 * y3
+ y2 * y3
+ y3 * y3
+ y1 * y4
+ y2 * y4
+ y3 * y4
+ y4 * y4;
let diag_z = z1 * z1
+ z1 * z2
+ z2 * z2
+ z1 * z3
+ z2 * z3
+ z3 * z3
+ z1 * z4
+ z2 * z4
+ z3 * z4
+ z4 * z4;
let a0 = (diag_y + diag_z) * 0.1;
let b0 = (diag_z + diag_x) * 0.1;
let c0 = (diag_x + diag_y) * 0.1;
let a1 = (y1 * z1 * 2.0
+ y2 * z1
+ y3 * z1
+ y4 * z1
+ y1 * z2
+ y2 * z2 * 2.0
+ y3 * z2
+ y4 * z2
+ y1 * z3
+ y2 * z3
+ y3 * z3 * 2.0
+ y4 * z3
+ y1 * z4
+ y2 * z4
+ y3 * z4
+ y4 * z4 * 2.0)
* 0.05;
let b1 = (x1 * z1 * 2.0
+ x2 * z1
+ x3 * z1
+ x4 * z1
+ x1 * z2
+ x2 * z2 * 2.0
+ x3 * z2
+ x4 * z2
+ x1 * z3
+ x2 * z3
+ x3 * z3 * 2.0
+ x4 * z3
+ x1 * z4
+ x2 * z4
+ x3 * z4
+ x4 * z4 * 2.0)
* 0.05;
let c1 = (x1 * y1 * 2.0
+ x2 * y1
+ x3 * y1
+ x4 * y1
+ x1 * y2
+ x2 * y2 * 2.0
+ x3 * y2
+ x4 * y2
+ x1 * y3
+ x2 * y3
+ x3 * y3 * 2.0
+ x4 * y3
+ x1 * y4
+ x2 * y4
+ x3 * y4
+ x4 * y4 * 2.0)
* 0.05;
Matrix::new(a0, -b1, -c1, -b1, b0, -a1, -c1, -a1, c0)
}
pub fn trimesh_signed_volume_and_center_of_mass(
vertices: &[Point<Real>],
indices: &[[u32; DIM]],
) -> (Real, Point<Real>) {
let geometric_center = Point::new(-10.0, -10.0, -10.0); let mut res = Point::origin();
let mut vol = 0.0;
for t in indices {
let p2 = vertices[t[0] as usize];
let p3 = vertices[t[1] as usize];
let p4 = vertices[t[2] as usize];
let volume = Tetrahedron::new(geometric_center, p2, p3, p4).signed_volume();
let center = Tetrahedron::new(geometric_center, p2, p3, p4).center();
res += center.coords * volume;
vol += volume;
}
if vol.is_zero() {
(vol, geometric_center)
} else {
(vol, res / vol)
}
}
#[cfg(test)]
mod test {
use crate::math::Vector;
use crate::{
mass_properties::MassProperties,
shape::{Ball, Capsule, Cone, Cuboid, Cylinder, Shape},
};
fn assert_same_principal_inertias(mprops1: &MassProperties, mprops2: &MassProperties) {
for k in 0..3 {
let i1 = mprops1.principal_inertia_local_frame
* mprops1.principal_inertia().component_mul(
&(mprops1.principal_inertia_local_frame.inverse() * Vector::ith(k, 1.0)),
);
let i2 = mprops2.principal_inertia_local_frame
* mprops2.principal_inertia().component_mul(
&(mprops2.principal_inertia_local_frame.inverse() * Vector::ith(k, 1.0)),
);
assert_relative_eq!(i1, i2, epsilon = 0.5)
}
}
#[test]
fn cuboid_as_trimesh_mprops() {
let cuboid = Cuboid::new(Vector::new(1.0, 2.0, 3.0));
use crate::shape::Shape;
let orig_mprops = cuboid.mass_properties(1.0);
dbg!(orig_mprops.principal_inertia());
let mut trimesh = cuboid.to_trimesh();
let mprops = MassProperties::from_trimesh(1.0, &trimesh.0, &trimesh.1);
assert_relative_eq!(mprops.mass(), 48.0, epsilon = 1.0e-4);
assert_relative_eq!(
(mprops.principal_inertia_local_frame * mprops.principal_inertia()).abs(),
Vector::new(208.0, 160.0, 80.0),
epsilon = 1.0e-4
);
trimesh
.0
.iter_mut()
.for_each(|pt| *pt += Vector::new(30.0, 20.0, 10.0));
let mprops = MassProperties::from_trimesh(1.0, &trimesh.0, &trimesh.1);
assert_relative_eq!(mprops.mass(), 48.0, epsilon = 1.0e-4);
assert_relative_eq!(
(mprops.principal_inertia_local_frame * mprops.principal_inertia()).abs(),
Vector::new(208.0, 160.0, 80.0),
epsilon = 1.0e-4
);
}
#[test]
fn primitives_as_trimesh_mprops() {
let primitives = (
Cuboid::new(Vector::new(1.0, 2.0, 3.0)),
Capsule::new_y(2.0, 1.0),
Cone::new(2.0, 1.0),
Cylinder::new(2.0, 1.0),
Ball::new(2.0),
);
let mut meshes = [
primitives.0.to_trimesh(),
primitives.1.to_trimesh(100, 100),
primitives.2.to_trimesh(100),
primitives.3.to_trimesh(100),
primitives.4.to_trimesh(100, 100),
];
let shapes = [
&primitives.0 as &dyn Shape,
&primitives.1 as &dyn Shape,
&primitives.2 as &dyn Shape,
&primitives.3 as &dyn Shape,
&primitives.4 as &dyn Shape,
];
for (shape, mesh) in shapes.iter().zip(meshes.iter_mut()) {
let shape_mprops = shape.mass_properties(2.0);
let mesh_mprops = MassProperties::from_trimesh(2.0, &mesh.0, &mesh.1);
assert_relative_eq!(shape_mprops.mass(), mesh_mprops.mass(), epsilon = 1.0e-1);
assert_same_principal_inertias(&shape_mprops, &mesh_mprops);
assert_relative_eq!(
shape_mprops.local_com,
mesh_mprops.local_com,
epsilon = 1.0e-3
);
let shift = Vector::new(33.0, 22.0, 11.0);
mesh.0.iter_mut().for_each(|pt| *pt += shift);
let mesh_mprops = MassProperties::from_trimesh(2.0, &mesh.0, &mesh.1);
assert_relative_eq!(shape_mprops.mass(), mesh_mprops.mass(), epsilon = 1.0e-1);
assert_same_principal_inertias(&shape_mprops, &mesh_mprops);
assert_relative_eq!(
shape_mprops.local_com + shift, mesh_mprops.local_com,
epsilon = 1.0e-3
);
}
}
}