1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
use crate::math::{Isometry, Point, Real, Vector};
use crate::shape::PackedFeatureId;
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
archive(check_bytes)
)]
/// A single contact between two shape.
pub struct TrackedContact<Data> {
/// The contact point in the local-space of the first shape.
pub local_p1: Point<Real>,
/// The contact point in the local-space of the second shape.
pub local_p2: Point<Real>,
/// The distance between the two contact points.
pub dist: Real,
/// The feature ID of the first shape involved in the contact.
pub fid1: PackedFeatureId,
/// The feature ID of the second shape involved in the contact.
pub fid2: PackedFeatureId,
/// User-data associated to this contact.
pub data: Data,
}
impl<Data: Default + Copy> TrackedContact<Data> {
/// Creates a new tracked contact.
pub fn new(
local_p1: Point<Real>,
local_p2: Point<Real>,
fid1: PackedFeatureId,
fid2: PackedFeatureId,
dist: Real,
) -> Self {
Self {
local_p1,
local_p2,
fid1,
fid2,
dist,
data: Data::default(),
}
}
/// Creates a new tracked contact where its input may need to be flipped.
pub fn flipped(
local_p1: Point<Real>,
local_p2: Point<Real>,
fid1: PackedFeatureId,
fid2: PackedFeatureId,
dist: Real,
flipped: bool,
) -> Self {
if !flipped {
Self::new(local_p1, local_p2, fid1, fid2, dist)
} else {
Self::new(local_p2, local_p1, fid2, fid1, dist)
}
}
/// Copy to `self` the geometric information from `contact`.
pub fn copy_geometry_from(&mut self, contact: Self) {
self.local_p1 = contact.local_p1;
self.local_p2 = contact.local_p2;
self.fid1 = contact.fid1;
self.fid2 = contact.fid2;
self.dist = contact.dist;
}
}
#[derive(Clone, Debug, Default)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// A contact manifold between two shapes.
///
/// A contact manifold describes a set of contacts between two shapes. All the contact
/// part of the same contact manifold share the same contact normal and contact kinematics.
pub struct ContactManifold<ManifoldData, ContactData> {
// NOTE: use a SmallVec instead?
// And for 2D use an ArrayVec since there will never be more than 2 contacts anyways.
/// The contacts points.
#[cfg(feature = "dim2")]
pub points: arrayvec::ArrayVec<TrackedContact<ContactData>, 2>,
/// The contacts points.
#[cfg(feature = "dim3")]
pub points: Vec<TrackedContact<ContactData>>,
/// The contact normal of all the contacts of this manifold, expressed in the local space of the first shape.
pub local_n1: Vector<Real>,
/// The contact normal of all the contacts of this manifold, expressed in the local space of the second shape.
pub local_n2: Vector<Real>,
/// The first subshape involved in this contact manifold.
///
/// This is zero if the first shape is not a composite shape.
pub subshape1: u32,
/// The second subshape involved in this contact manifold.
///
/// This is zero if the second shape is not a composite shape.
pub subshape2: u32,
/// If the first shape involved is a composite shape, this contains the position of its subshape
/// involved in this contact.
pub subshape_pos1: Option<Isometry<Real>>,
/// If the second shape involved is a composite shape, this contains the position of its subshape
/// involved in this contact.
pub subshape_pos2: Option<Isometry<Real>>,
/// Additional tracked data associated to this contact manifold.
pub data: ManifoldData,
}
impl<ManifoldData, ContactData: Default + Copy> ContactManifold<ManifoldData, ContactData> {
/// Create a new empty contact-manifold.
pub fn new() -> Self
where
ManifoldData: Default,
{
Self::default()
}
/// Create a new empty contact-manifold with the given associated data.
pub fn with_data(subshape1: u32, subshape2: u32, data: ManifoldData) -> Self {
Self {
#[cfg(feature = "dim2")]
points: arrayvec::ArrayVec::new(),
#[cfg(feature = "dim3")]
points: Vec::new(),
local_n1: Vector::zeros(),
local_n2: Vector::zeros(),
subshape1,
subshape2,
subshape_pos1: None,
subshape_pos2: None,
data,
}
}
/// Clones `self` and then remove all contact points from `self`.
pub fn take(&mut self) -> Self
where
ManifoldData: Clone,
{
#[cfg(feature = "dim2")]
let points = self.points.clone();
#[cfg(feature = "dim3")]
let points = std::mem::take(&mut self.points);
self.points.clear();
ContactManifold {
points,
local_n1: self.local_n1,
local_n2: self.local_n2,
subshape1: self.subshape1,
subshape2: self.subshape2,
subshape_pos1: self.subshape_pos1,
subshape_pos2: self.subshape_pos2,
data: self.data.clone(),
}
}
/*
pub(crate) fn single_manifold<'a, 'b>(
manifolds: &mut Vec<Self>,
data: &dyn Fn() -> ManifoldData,
) -> &'a mut Self {
if manifolds.is_empty() {
let manifold_data = data();
manifolds.push(ContactManifold::with_data((0, 0), manifold_data));
}
&mut manifolds[0]
}
*/
/// The slice of all the contacts, active or not, on this contact manifold.
#[inline]
pub fn contacts(&self) -> &[TrackedContact<ContactData>] {
&self.points
}
/// Attempts to use spatial coherence to update contacts points.
#[inline]
pub fn try_update_contacts(&mut self, pos12: &Isometry<Real>) -> bool {
// const DOT_THRESHOLD: Real = 0.crate::COS_10_DEGREES;
// const DOT_THRESHOLD: Real = crate::utils::COS_5_DEGREES;
const DOT_THRESHOLD: Real = crate::utils::COS_1_DEGREES;
const DIST_SQ_THRESHOLD: Real = 1.0e-6; // FIXME: this should not be hard-coded.
self.try_update_contacts_eps(pos12, DOT_THRESHOLD, DIST_SQ_THRESHOLD)
}
/// Attempts to use spatial coherence to update contacts points, using user-defined tolerances.
#[inline]
pub fn try_update_contacts_eps(
&mut self,
pos12: &Isometry<Real>,
angle_dot_threshold: Real,
dist_sq_threshold: Real,
) -> bool {
if self.points.is_empty() {
return false;
}
let local_n2 = pos12 * self.local_n2;
if -self.local_n1.dot(&local_n2) < angle_dot_threshold {
return false;
}
for pt in &mut self.points {
let local_p2 = pos12 * pt.local_p2;
let dpt = local_p2 - pt.local_p1;
let dist = dpt.dot(&self.local_n1);
if dist * pt.dist < 0.0 {
// We switched between penetrating/non-penetrating.
// The may result in other contacts to appear.
return false;
}
let new_local_p1 = local_p2 - self.local_n1 * dist;
if na::distance_squared(&pt.local_p1, &new_local_p1) > dist_sq_threshold {
return false;
}
pt.dist = dist;
pt.local_p1 = new_local_p1;
}
true
}
/// Copy data associated to contacts from `old_contacts` to the new contacts in `self`
/// based on matching their feature-ids.
pub fn match_contacts(&mut self, old_contacts: &[TrackedContact<ContactData>]) {
for contact in &mut self.points {
for old_contact in old_contacts {
if contact.fid1 == old_contact.fid1 && contact.fid2 == old_contact.fid2 {
// Transfer the tracked data.
contact.data = old_contact.data;
}
}
}
}
/// Copy data associated to contacts from `old_contacts` to the new contacts in `self`
/// based on matching the contact positions.
pub fn match_contacts_using_positions(
&mut self,
old_contacts: &[TrackedContact<ContactData>],
dist_threshold: Real,
) {
let sq_threshold = dist_threshold * dist_threshold;
for contact in &mut self.points {
for old_contact in old_contacts {
if na::distance_squared(&contact.local_p1, &old_contact.local_p1) < sq_threshold
&& na::distance_squared(&contact.local_p2, &old_contact.local_p2) < sq_threshold
{
// Transfer the tracked data.
contact.data = old_contact.data;
}
}
}
}
/// Removes all the contacts from `self`.
pub fn clear(&mut self) {
self.points.clear();
}
/// Returns the contact with the smallest distance (i.e. the largest penetration depth).
pub fn find_deepest_contact(&self) -> Option<&TrackedContact<ContactData>> {
let mut deepest = self.points.first()?;
for pt in &self.points {
if pt.dist < deepest.dist {
deepest = pt;
}
}
Some(deepest)
}
}