1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
use std::{hash::Hash, hint::unreachable_unchecked, sync::Arc};

use crate::{
    bitmap::{
        utils::{BitmapIter, ZipValidity},
        Bitmap,
    },
    datatypes::{DataType, IntegerType},
    error::Error,
    scalar::{new_scalar, Scalar},
    trusted_len::TrustedLen,
    types::NativeType,
};

#[cfg(feature = "arrow")]
mod data;
mod ffi;
pub(super) mod fmt;
mod iterator;
mod mutable;
use crate::array::specification::check_indexes_unchecked;
mod typed_iterator;
mod value_map;

use crate::array::dictionary::typed_iterator::{DictValue, DictionaryValuesIterTyped};
pub use iterator::*;
pub use mutable::*;

use super::{new_empty_array, primitive::PrimitiveArray, Array};
use super::{new_null_array, specification::check_indexes};

/// Trait denoting [`NativeType`]s that can be used as keys of a dictionary.
/// # Safety
///
/// Any implementation of this trait must ensure that `always_fits_usize` only
/// returns `true` if all values succeeds on `value::try_into::<usize>().unwrap()`.
pub unsafe trait DictionaryKey: NativeType + TryInto<usize> + TryFrom<usize> + Hash {
    /// The corresponding [`IntegerType`] of this key
    const KEY_TYPE: IntegerType;

    /// Represents this key as a `usize`.
    /// # Safety
    /// The caller _must_ have checked that the value can be casted to `usize`.
    #[inline]
    unsafe fn as_usize(self) -> usize {
        match self.try_into() {
            Ok(v) => v,
            Err(_) => unreachable_unchecked(),
        }
    }

    /// If the key type always can be converted to `usize`.
    fn always_fits_usize() -> bool {
        false
    }
}

unsafe impl DictionaryKey for i8 {
    const KEY_TYPE: IntegerType = IntegerType::Int8;
}
unsafe impl DictionaryKey for i16 {
    const KEY_TYPE: IntegerType = IntegerType::Int16;
}
unsafe impl DictionaryKey for i32 {
    const KEY_TYPE: IntegerType = IntegerType::Int32;
}
unsafe impl DictionaryKey for i64 {
    const KEY_TYPE: IntegerType = IntegerType::Int64;
}
unsafe impl DictionaryKey for u8 {
    const KEY_TYPE: IntegerType = IntegerType::UInt8;

    fn always_fits_usize() -> bool {
        true
    }
}
unsafe impl DictionaryKey for u16 {
    const KEY_TYPE: IntegerType = IntegerType::UInt16;

    fn always_fits_usize() -> bool {
        true
    }
}
unsafe impl DictionaryKey for u32 {
    const KEY_TYPE: IntegerType = IntegerType::UInt32;

    fn always_fits_usize() -> bool {
        true
    }
}
unsafe impl DictionaryKey for u64 {
    const KEY_TYPE: IntegerType = IntegerType::UInt64;

    #[cfg(target_pointer_width = "64")]
    fn always_fits_usize() -> bool {
        true
    }
}

/// An [`Array`] whose values are stored as indices. This [`Array`] is useful when the cardinality of
/// values is low compared to the length of the [`Array`].
///
/// # Safety
/// This struct guarantees that each item of [`DictionaryArray::keys`] is castable to `usize` and
/// its value is smaller than [`DictionaryArray::values`]`.len()`. In other words, you can safely
/// use `unchecked` calls to retrive the values
#[derive(Clone)]
pub struct DictionaryArray<K: DictionaryKey> {
    data_type: DataType,
    keys: PrimitiveArray<K>,
    values: Box<dyn Array>,
}

fn check_data_type(
    key_type: IntegerType,
    data_type: &DataType,
    values_data_type: &DataType,
) -> Result<(), Error> {
    if let DataType::Dictionary(key, value, _) = data_type.to_logical_type() {
        if *key != key_type {
            return Err(Error::oos(
                "DictionaryArray must be initialized with a DataType::Dictionary whose integer is compatible to its keys",
            ));
        }
        if value.as_ref().to_logical_type() != values_data_type.to_logical_type() {
            return Err(Error::oos(
                "DictionaryArray must be initialized with a DataType::Dictionary whose value is equal to its values",
            ));
        }
    } else {
        return Err(Error::oos(
            "DictionaryArray must be initialized with logical DataType::Dictionary",
        ));
    }
    Ok(())
}

impl<K: DictionaryKey> DictionaryArray<K> {
    /// Returns a new [`DictionaryArray`].
    /// # Implementation
    /// This function is `O(N)` where `N` is the length of keys
    /// # Errors
    /// This function errors iff
    /// * the `data_type`'s logical type is not a `DictionaryArray`
    /// * the `data_type`'s keys is not compatible with `keys`
    /// * the `data_type`'s values's data_type is not equal with `values.data_type()`
    /// * any of the keys's values is not represented in `usize` or is `>= values.len()`
    pub fn try_new(
        data_type: DataType,
        keys: PrimitiveArray<K>,
        values: Box<dyn Array>,
    ) -> Result<Self, Error> {
        check_data_type(K::KEY_TYPE, &data_type, values.data_type())?;

        if keys.null_count() != keys.len() {
            if K::always_fits_usize() {
                // safety: we just checked that conversion to `usize` always
                // succeeds
                unsafe { check_indexes_unchecked(keys.values(), values.len()) }?;
            } else {
                check_indexes(keys.values(), values.len())?;
            }
        }

        Ok(Self {
            data_type,
            keys,
            values,
        })
    }

    /// Returns a new [`DictionaryArray`].
    /// # Implementation
    /// This function is `O(N)` where `N` is the length of keys
    /// # Errors
    /// This function errors iff
    /// * any of the keys's values is not represented in `usize` or is `>= values.len()`
    pub fn try_from_keys(keys: PrimitiveArray<K>, values: Box<dyn Array>) -> Result<Self, Error> {
        let data_type = Self::default_data_type(values.data_type().clone());
        Self::try_new(data_type, keys, values)
    }

    /// Returns a new [`DictionaryArray`].
    /// # Errors
    /// This function errors iff
    /// * the `data_type`'s logical type is not a `DictionaryArray`
    /// * the `data_type`'s keys is not compatible with `keys`
    /// * the `data_type`'s values's data_type is not equal with `values.data_type()`
    /// # Safety
    /// The caller must ensure that every keys's values is represented in `usize` and is `< values.len()`
    pub unsafe fn try_new_unchecked(
        data_type: DataType,
        keys: PrimitiveArray<K>,
        values: Box<dyn Array>,
    ) -> Result<Self, Error> {
        check_data_type(K::KEY_TYPE, &data_type, values.data_type())?;

        Ok(Self {
            data_type,
            keys,
            values,
        })
    }

    /// Returns a new empty [`DictionaryArray`].
    pub fn new_empty(data_type: DataType) -> Self {
        let values = Self::try_get_child(&data_type).unwrap();
        let values = new_empty_array(values.clone());
        Self::try_new(
            data_type,
            PrimitiveArray::<K>::new_empty(K::PRIMITIVE.into()),
            values,
        )
        .unwrap()
    }

    /// Returns an [`DictionaryArray`] whose all elements are null
    #[inline]
    pub fn new_null(data_type: DataType, length: usize) -> Self {
        let values = Self::try_get_child(&data_type).unwrap();
        let values = new_null_array(values.clone(), 1);
        Self::try_new(
            data_type,
            PrimitiveArray::<K>::new_null(K::PRIMITIVE.into(), length),
            values,
        )
        .unwrap()
    }

    /// Returns an iterator of [`Option<Box<dyn Scalar>>`].
    /// # Implementation
    /// This function will allocate a new [`Scalar`] per item and is usually not performant.
    /// Consider calling `keys_iter` and `values`, downcasting `values`, and iterating over that.
    pub fn iter(&self) -> ZipValidity<Box<dyn Scalar>, DictionaryValuesIter<K>, BitmapIter> {
        ZipValidity::new_with_validity(DictionaryValuesIter::new(self), self.keys.validity())
    }

    /// Returns an iterator of [`Box<dyn Scalar>`]
    /// # Implementation
    /// This function will allocate a new [`Scalar`] per item and is usually not performant.
    /// Consider calling `keys_iter` and `values`, downcasting `values`, and iterating over that.
    pub fn values_iter(&self) -> DictionaryValuesIter<K> {
        DictionaryValuesIter::new(self)
    }

    /// Returns an iterator over the the values [`V::IterValue`].
    ///
    /// # Panics
    ///
    /// Panics if the keys of this [`DictionaryArray`] have any null types.
    /// If they do [`DictionaryArray::iter_typed`] should be called
    pub fn values_iter_typed<V: DictValue>(
        &self,
    ) -> Result<DictionaryValuesIterTyped<K, V>, Error> {
        let keys = &self.keys;
        assert_eq!(keys.null_count(), 0);
        let values = self.values.as_ref();
        let values = V::downcast_values(values)?;
        Ok(unsafe { DictionaryValuesIterTyped::new(keys, values) })
    }

    /// Returns an iterator over the the optional values of  [`Option<V::IterValue>`].
    ///
    /// # Panics
    ///
    /// This function panics if the `values` array
    pub fn iter_typed<V: DictValue>(
        &self,
    ) -> Result<ZipValidity<V::IterValue<'_>, DictionaryValuesIterTyped<K, V>, BitmapIter>, Error>
    {
        let keys = &self.keys;
        let values = self.values.as_ref();
        let values = V::downcast_values(values)?;
        let values_iter = unsafe { DictionaryValuesIterTyped::new(keys, values) };
        Ok(ZipValidity::new_with_validity(values_iter, self.validity()))
    }

    /// Returns the [`DataType`] of this [`DictionaryArray`]
    #[inline]
    pub fn data_type(&self) -> &DataType {
        &self.data_type
    }

    /// Returns whether the values of this [`DictionaryArray`] are ordered
    #[inline]
    pub fn is_ordered(&self) -> bool {
        match self.data_type.to_logical_type() {
            DataType::Dictionary(_, _, is_ordered) => *is_ordered,
            _ => unreachable!(),
        }
    }

    pub(crate) fn default_data_type(values_datatype: DataType) -> DataType {
        DataType::Dictionary(K::KEY_TYPE, Arc::new(values_datatype), false)
    }

    /// Slices this [`DictionaryArray`].
    /// # Panics
    /// iff `offset + length > self.len()`.
    pub fn slice(&mut self, offset: usize, length: usize) {
        self.keys.slice(offset, length);
    }

    /// Slices this [`DictionaryArray`].
    /// # Safety
    /// Safe iff `offset + length <= self.len()`.
    pub unsafe fn slice_unchecked(&mut self, offset: usize, length: usize) {
        self.keys.slice_unchecked(offset, length);
    }

    impl_sliced!();

    /// Returns this [`DictionaryArray`] with a new validity.
    /// # Panic
    /// This function panics iff `validity.len() != self.len()`.
    #[must_use]
    pub fn with_validity(mut self, validity: Option<Bitmap>) -> Self {
        self.set_validity(validity);
        self
    }

    /// Sets the validity of the keys of this [`DictionaryArray`].
    /// # Panics
    /// This function panics iff `validity.len() != self.len()`.
    pub fn set_validity(&mut self, validity: Option<Bitmap>) {
        self.keys.set_validity(validity);
    }

    impl_into_array!();

    /// Returns the length of this array
    #[inline]
    pub fn len(&self) -> usize {
        self.keys.len()
    }

    /// The optional validity. Equivalent to `self.keys().validity()`.
    #[inline]
    pub fn validity(&self) -> Option<&Bitmap> {
        self.keys.validity()
    }

    /// Returns the keys of the [`DictionaryArray`]. These keys can be used to fetch values
    /// from `values`.
    #[inline]
    pub fn keys(&self) -> &PrimitiveArray<K> {
        &self.keys
    }

    /// Returns an iterator of the keys' values of the [`DictionaryArray`] as `usize`
    #[inline]
    pub fn keys_values_iter(&self) -> impl TrustedLen<Item = usize> + Clone + '_ {
        // safety - invariant of the struct
        self.keys.values_iter().map(|x| unsafe { x.as_usize() })
    }

    /// Returns an iterator of the keys' of the [`DictionaryArray`] as `usize`
    #[inline]
    pub fn keys_iter(&self) -> impl TrustedLen<Item = Option<usize>> + Clone + '_ {
        // safety - invariant of the struct
        self.keys.iter().map(|x| x.map(|x| unsafe { x.as_usize() }))
    }

    /// Returns the keys' value of the [`DictionaryArray`] as `usize`
    /// # Panics
    /// This function panics iff `index >= self.len()`
    #[inline]
    pub fn key_value(&self, index: usize) -> usize {
        // safety - invariant of the struct
        unsafe { self.keys.values()[index].as_usize() }
    }

    /// Returns the values of the [`DictionaryArray`].
    #[inline]
    pub fn values(&self) -> &Box<dyn Array> {
        &self.values
    }

    /// Returns the value of the [`DictionaryArray`] at position `i`.
    /// # Implementation
    /// This function will allocate a new [`Scalar`] and is usually not performant.
    /// Consider calling `keys` and `values`, downcasting `values`, and iterating over that.
    /// # Panic
    /// This function panics iff `index >= self.len()`
    #[inline]
    pub fn value(&self, index: usize) -> Box<dyn Scalar> {
        // safety - invariant of this struct
        let index = unsafe { self.keys.value(index).as_usize() };
        new_scalar(self.values.as_ref(), index)
    }

    pub(crate) fn try_get_child(data_type: &DataType) -> Result<&DataType, Error> {
        Ok(match data_type.to_logical_type() {
            DataType::Dictionary(_, values, _) => values.as_ref(),
            _ => {
                return Err(Error::oos(
                    "Dictionaries must be initialized with DataType::Dictionary",
                ))
            }
        })
    }
}

impl<K: DictionaryKey> Array for DictionaryArray<K> {
    impl_common_array!();

    fn validity(&self) -> Option<&Bitmap> {
        self.keys.validity()
    }

    #[inline]
    fn with_validity(&self, validity: Option<Bitmap>) -> Box<dyn Array> {
        Box::new(self.clone().with_validity(validity))
    }
}