1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
use std::{iter::FromIterator, ops::Deref, sync::Arc};
use either::Either;
use crate::{buffer::Bytes, error::Error, trusted_len::TrustedLen};
use super::{
chunk_iter_to_vec,
utils::{count_zeros, fmt, get_bit, get_bit_unchecked, BitChunk, BitChunks, BitmapIter},
IntoIter, MutableBitmap,
};
/// An immutable container semantically equivalent to `Arc<Vec<bool>>` but represented as `Arc<Vec<u8>>` where
/// each boolean is represented as a single bit.
///
/// # Examples
/// ```
/// use re_arrow2::bitmap::{Bitmap, MutableBitmap};
///
/// let bitmap = Bitmap::from([true, false, true]);
/// assert_eq!(bitmap.iter().collect::<Vec<_>>(), vec![true, false, true]);
///
/// // creation directly from bytes
/// let bitmap = Bitmap::try_new(vec![0b00001101], 5).unwrap();
/// // note: the first bit is the left-most of the first byte
/// assert_eq!(bitmap.iter().collect::<Vec<_>>(), vec![true, false, true, true, false]);
/// // we can also get the slice:
/// assert_eq!(bitmap.as_slice(), ([0b00001101u8].as_ref(), 0, 5));
/// // debug helps :)
/// assert_eq!(format!("{:?}", bitmap), "[0b___01101]".to_string());
///
/// // it supports copy-on-write semantics (to a `MutableBitmap`)
/// let bitmap: MutableBitmap = bitmap.into_mut().right().unwrap();
/// assert_eq!(bitmap, MutableBitmap::from([true, false, true, true, false]));
///
/// // slicing is 'O(1)' (data is shared)
/// let bitmap = Bitmap::try_new(vec![0b00001101], 5).unwrap();
/// let mut sliced = bitmap.clone();
/// sliced.slice(1, 4);
/// assert_eq!(sliced.as_slice(), ([0b00001101u8].as_ref(), 1, 4)); // 1 here is the offset:
/// assert_eq!(format!("{:?}", sliced), "[0b___0110_]".to_string());
/// // when sliced (or cloned), it is no longer possible to `into_mut`.
/// let same: Bitmap = sliced.into_mut().left().unwrap();
/// ```
#[derive(Clone)]
pub struct Bitmap {
bytes: Arc<Bytes<u8>>,
// both are measured in bits. They are used to bound the bitmap to a region of Bytes.
offset: usize,
length: usize,
// this is a cache: it is computed on initialization
unset_bits: usize,
}
impl std::fmt::Debug for Bitmap {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let (bytes, offset, len) = self.as_slice();
fmt(bytes, offset, len, f)
}
}
impl Default for Bitmap {
fn default() -> Self {
MutableBitmap::new().into()
}
}
pub(super) fn check(bytes: &[u8], offset: usize, length: usize) -> Result<(), Error> {
if offset + length > bytes.len().saturating_mul(8) {
return Err(Error::InvalidArgumentError(format!(
"The offset + length of the bitmap ({}) must be `<=` to the number of bytes times 8 ({})",
offset + length,
bytes.len().saturating_mul(8)
)));
}
Ok(())
}
impl Bitmap {
/// Initializes an empty [`Bitmap`].
#[inline]
pub fn new() -> Self {
Self::default()
}
/// Initializes a new [`Bitmap`] from vector of bytes and a length.
/// # Errors
/// This function errors iff `length > bytes.len() * 8`
#[inline]
pub fn try_new(bytes: Vec<u8>, length: usize) -> Result<Self, Error> {
check(&bytes, 0, length)?;
let unset_bits = count_zeros(&bytes, 0, length);
Ok(Self {
length,
offset: 0,
bytes: Arc::new(bytes.into()),
unset_bits,
})
}
/// Returns the length of the [`Bitmap`].
#[inline]
pub fn len(&self) -> usize {
self.length
}
/// Returns whether [`Bitmap`] is empty
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns a new iterator of `bool` over this bitmap
pub fn iter(&self) -> BitmapIter {
BitmapIter::new(&self.bytes, self.offset, self.length)
}
/// Returns an iterator over bits in bit chunks [`BitChunk`].
///
/// This iterator is useful to operate over multiple bits via e.g. bitwise.
pub fn chunks<T: BitChunk>(&self) -> BitChunks<T> {
BitChunks::new(&self.bytes, self.offset, self.length)
}
/// Returns the byte slice of this [`Bitmap`].
///
/// The returned tuple contains:
/// * `.1`: The byte slice, truncated to the start of the first bit. So the start of the slice
/// is within the first 8 bits.
/// * `.2`: The start offset in bits on a range `0 <= offsets < 8`.
/// * `.3`: The length in number of bits.
#[inline]
pub fn as_slice(&self) -> (&[u8], usize, usize) {
let start = self.offset / 8;
let len = (self.offset % 8 + self.length).saturating_add(7) / 8;
(
&self.bytes[start..start + len],
self.offset % 8,
self.length,
)
}
/// Returns the number of unset bits on this [`Bitmap`].
///
/// Guaranteed to be `<= self.len()`.
/// # Implementation
/// This function is `O(1)` - the number of unset bits is computed when the bitmap is
/// created
pub const fn unset_bits(&self) -> usize {
self.unset_bits
}
/// Returns the number of unset bits on this [`Bitmap`].
#[inline]
#[deprecated(since = "0.13.0", note = "use `unset_bits` instead")]
pub fn null_count(&self) -> usize {
self.unset_bits
}
/// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
/// # Panic
/// Panics iff `offset + length > self.length`, i.e. if the offset and `length`
/// exceeds the allocated capacity of `self`.
#[inline]
pub fn slice(&mut self, offset: usize, length: usize) {
assert!(offset + length <= self.length);
unsafe { self.slice_unchecked(offset, length) }
}
/// Slices `self`, offseting by `offset` and truncating up to `length` bits.
/// # Safety
/// The caller must ensure that `self.offset + offset + length <= self.len()`
#[inline]
pub unsafe fn slice_unchecked(&mut self, offset: usize, length: usize) {
// we don't do a bitcount in the following cases:
// 1. if there isn't any data sliced.
// 2. if this [`Bitmap`] is all true or all false.
if !(offset == 0 && length == self.length || self.unset_bits == 0) {
// if `self.unset_bits == self.length` is false, we count the smallest chunk
// and do a bitcount.
if self.unset_bits == self.length {
self.unset_bits = length;
} else if length < self.length / 2 {
// count the null values in the slice
self.unset_bits = count_zeros(&self.bytes, self.offset + offset, length);
} else {
// subtract the null count of the chunks we slice off
let start_end = self.offset + offset + length;
let head_count = count_zeros(&self.bytes, self.offset, offset);
let tail_count = count_zeros(&self.bytes, start_end, self.length - length - offset);
self.unset_bits -= head_count + tail_count;
}
}
self.offset += offset;
self.length = length;
}
/// Slices `self`, offsetting by `offset` and truncating up to `length` bits.
/// # Panic
/// Panics iff `offset + length > self.length`, i.e. if the offset and `length`
/// exceeds the allocated capacity of `self`.
#[inline]
#[must_use]
pub fn sliced(self, offset: usize, length: usize) -> Self {
assert!(offset + length <= self.length);
unsafe { self.sliced_unchecked(offset, length) }
}
/// Slices `self`, offseting by `offset` and truncating up to `length` bits.
/// # Safety
/// The caller must ensure that `self.offset + offset + length <= self.len()`
#[inline]
#[must_use]
pub unsafe fn sliced_unchecked(mut self, offset: usize, length: usize) -> Self {
self.slice_unchecked(offset, length);
self
}
/// Returns whether the bit at position `i` is set.
/// # Panics
/// Panics iff `i >= self.len()`.
#[inline]
pub fn get_bit(&self, i: usize) -> bool {
get_bit(&self.bytes, self.offset + i)
}
/// Unsafely returns whether the bit at position `i` is set.
/// # Safety
/// Unsound iff `i >= self.len()`.
#[inline]
pub unsafe fn get_bit_unchecked(&self, i: usize) -> bool {
get_bit_unchecked(&self.bytes, self.offset + i)
}
/// Returns a pointer to the start of this [`Bitmap`] (ignores `offsets`)
/// This pointer is allocated iff `self.len() > 0`.
pub(crate) fn as_ptr(&self) -> *const u8 {
self.bytes.deref().as_ptr()
}
/// Returns a pointer to the start of this [`Bitmap`] (ignores `offsets`)
/// This pointer is allocated iff `self.len() > 0`.
pub(crate) fn offset(&self) -> usize {
self.offset
}
/// Converts this [`Bitmap`] to [`MutableBitmap`], returning itself if the conversion
/// is not possible
///
/// This operation returns a [`MutableBitmap`] iff:
/// * this [`Bitmap`] is not an offsetted slice of another [`Bitmap`]
/// * this [`Bitmap`] has not been cloned (i.e. [`Arc`]`::get_mut` yields [`Some`])
/// * this [`Bitmap`] was not imported from the c data interface (FFI)
pub fn into_mut(mut self) -> Either<Self, MutableBitmap> {
match (
self.offset,
Arc::get_mut(&mut self.bytes).and_then(|b| b.get_vec()),
) {
(0, Some(v)) => {
let data = std::mem::take(v);
Either::Right(MutableBitmap::from_vec(data, self.length))
}
_ => Either::Left(self),
}
}
/// Converts this [`Bitmap`] into a [`MutableBitmap`], cloning its internal
/// buffer if required (clone-on-write).
pub fn make_mut(self) -> MutableBitmap {
match self.into_mut() {
Either::Left(data) => {
if data.offset > 0 {
// re-align the bits (remove the offset)
let chunks = data.chunks::<u64>();
let remainder = chunks.remainder();
let vec = chunk_iter_to_vec(chunks.chain(std::iter::once(remainder)));
MutableBitmap::from_vec(vec, data.length)
} else {
MutableBitmap::from_vec(data.bytes.as_ref().to_vec(), data.length)
}
}
Either::Right(data) => data,
}
}
/// Initializes an new [`Bitmap`] filled with set/unset values.
#[inline]
pub fn new_constant(value: bool, length: usize) -> Self {
match value {
true => Self::new_trued(length),
false => Self::new_zeroed(length),
}
}
/// Initializes an new [`Bitmap`] filled with unset values.
#[inline]
pub fn new_zeroed(length: usize) -> Self {
// don't use `MutableBitmap::from_len_zeroed().into()`
// it triggers a bitcount
let bytes = vec![0; length.saturating_add(7) / 8];
unsafe { Bitmap::from_inner_unchecked(Arc::new(bytes.into()), 0, length, length) }
}
/// Initializes an new [`Bitmap`] filled with set values.
#[inline]
pub fn new_trued(length: usize) -> Self {
// just set each byte to u8::MAX
// we will not access data with index >= length
let bytes = vec![0b11111111u8; length.saturating_add(7) / 8];
unsafe { Bitmap::from_inner_unchecked(Arc::new(bytes.into()), 0, length, 0) }
}
/// Counts the nulls (unset bits) starting from `offset` bits and for `length` bits.
#[inline]
pub fn null_count_range(&self, offset: usize, length: usize) -> usize {
count_zeros(&self.bytes, self.offset + offset, length)
}
/// Creates a new [`Bitmap`] from a slice and length.
/// # Panic
/// Panics iff `length <= bytes.len() * 8`
#[inline]
pub fn from_u8_slice<T: AsRef<[u8]>>(slice: T, length: usize) -> Self {
Bitmap::try_new(slice.as_ref().to_vec(), length).unwrap()
}
/// Alias for `Bitmap::try_new().unwrap()`
/// This function is `O(1)`
/// # Panic
/// This function panics iff `length <= bytes.len() * 8`
#[inline]
pub fn from_u8_vec(vec: Vec<u8>, length: usize) -> Self {
Bitmap::try_new(vec, length).unwrap()
}
/// Returns whether the bit at position `i` is set.
#[inline]
pub fn get(&self, i: usize) -> Option<bool> {
if i < self.len() {
Some(unsafe { self.get_bit_unchecked(i) })
} else {
None
}
}
/// Returns its internal representation
#[must_use]
pub fn into_inner(self) -> (Arc<Bytes<u8>>, usize, usize, usize) {
let Self {
bytes,
offset,
length,
unset_bits,
} = self;
(bytes, offset, length, unset_bits)
}
/// Creates a `[Bitmap]` from its internal representation.
/// This is the inverted from `[Bitmap::into_inner]`
///
/// # Safety
/// The invariants of this struct must be upheld
pub unsafe fn from_inner(
bytes: Arc<Bytes<u8>>,
offset: usize,
length: usize,
unset_bits: usize,
) -> Result<Self, Error> {
check(&bytes, offset, length)?;
Ok(Self {
bytes,
offset,
length,
unset_bits,
})
}
/// Creates a `[Bitmap]` from its internal representation.
/// This is the inverted from `[Bitmap::into_inner]`
///
/// # Safety
/// Callers must ensure all invariants of this struct are upheld.
pub unsafe fn from_inner_unchecked(
bytes: Arc<Bytes<u8>>,
offset: usize,
length: usize,
unset_bits: usize,
) -> Self {
Self {
bytes,
offset,
length,
unset_bits,
}
}
}
impl<P: AsRef<[bool]>> From<P> for Bitmap {
fn from(slice: P) -> Self {
Self::from_trusted_len_iter(slice.as_ref().iter().copied())
}
}
impl FromIterator<bool> for Bitmap {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = bool>,
{
MutableBitmap::from_iter(iter).into()
}
}
impl Bitmap {
/// Creates a new [`Bitmap`] from an iterator of booleans.
/// # Safety
/// The iterator must report an accurate length.
#[inline]
pub unsafe fn from_trusted_len_iter_unchecked<I: Iterator<Item = bool>>(iterator: I) -> Self {
MutableBitmap::from_trusted_len_iter_unchecked(iterator).into()
}
/// Creates a new [`Bitmap`] from an iterator of booleans.
#[inline]
pub fn from_trusted_len_iter<I: TrustedLen<Item = bool>>(iterator: I) -> Self {
MutableBitmap::from_trusted_len_iter(iterator).into()
}
/// Creates a new [`Bitmap`] from a fallible iterator of booleans.
#[inline]
pub fn try_from_trusted_len_iter<E, I: TrustedLen<Item = std::result::Result<bool, E>>>(
iterator: I,
) -> std::result::Result<Self, E> {
Ok(MutableBitmap::try_from_trusted_len_iter(iterator)?.into())
}
/// Creates a new [`Bitmap`] from a fallible iterator of booleans.
/// # Safety
/// The iterator must report an accurate length.
#[inline]
pub unsafe fn try_from_trusted_len_iter_unchecked<
E,
I: Iterator<Item = std::result::Result<bool, E>>,
>(
iterator: I,
) -> std::result::Result<Self, E> {
Ok(MutableBitmap::try_from_trusted_len_iter_unchecked(iterator)?.into())
}
/// Create a new [`Bitmap`] from an arrow [`NullBuffer`]
///
/// [`NullBuffer`]: arrow_buffer::buffer::NullBuffer
#[cfg(feature = "arrow")]
pub fn from_null_buffer(value: arrow_buffer::buffer::NullBuffer) -> Self {
let offset = value.offset();
let length = value.len();
let unset_bits = value.null_count();
Self {
offset,
length,
unset_bits,
bytes: Arc::new(crate::buffer::to_bytes(value.buffer().clone())),
}
}
}
impl<'a> IntoIterator for &'a Bitmap {
type Item = bool;
type IntoIter = BitmapIter<'a>;
fn into_iter(self) -> Self::IntoIter {
BitmapIter::<'a>::new(&self.bytes, self.offset, self.length)
}
}
impl IntoIterator for Bitmap {
type Item = bool;
type IntoIter = IntoIter;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self)
}
}
#[cfg(feature = "arrow")]
impl From<Bitmap> for arrow_buffer::buffer::NullBuffer {
fn from(value: Bitmap) -> Self {
let null_count = value.unset_bits;
let buffer = crate::buffer::to_buffer(value.bytes);
let buffer = arrow_buffer::buffer::BooleanBuffer::new(buffer, value.offset, value.length);
// Safety: null count is accurate
unsafe { arrow_buffer::buffer::NullBuffer::new_unchecked(buffer, null_count) }
}
}