1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
use crate::bitmap::Bitmap;
/// Internal state of [`SlicesIterator`]
#[derive(Debug, Clone, PartialEq)]
enum State {
// normal iteration
Nominal,
// nothing more to iterate.
Finished,
}
/// Iterator over a bitmap that returns slices of set regions
/// This is the most efficient method to extract slices of values from arrays
/// with a validity bitmap.
/// For example, the bitmap `00101111` returns `[(0,4), (6,1)]`
#[derive(Debug, Clone)]
pub struct SlicesIterator<'a> {
values: std::slice::Iter<'a, u8>,
count: usize,
mask: u8,
max_len: usize,
current_byte: &'a u8,
state: State,
len: usize,
start: usize,
on_region: bool,
}
impl<'a> SlicesIterator<'a> {
/// Creates a new [`SlicesIterator`]
pub fn new(values: &'a Bitmap) -> Self {
let (buffer, offset, _) = values.as_slice();
let mut iter = buffer.iter();
let (current_byte, state) = match iter.next() {
Some(b) => (b, State::Nominal),
None => (&0, State::Finished),
};
Self {
state,
count: values.len() - values.unset_bits(),
max_len: values.len(),
values: iter,
mask: 1u8.rotate_left(offset as u32),
current_byte,
len: 0,
start: 0,
on_region: false,
}
}
#[inline]
fn finish(&mut self) -> Option<(usize, usize)> {
self.state = State::Finished;
if self.on_region {
Some((self.start, self.len))
} else {
None
}
}
#[inline]
fn current_len(&self) -> usize {
self.start + self.len
}
/// Returns the total number of slots.
/// It corresponds to the sum of all lengths of all slices.
#[inline]
pub fn slots(&self) -> usize {
self.count
}
}
impl<'a> Iterator for SlicesIterator<'a> {
type Item = (usize, usize);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.state == State::Finished {
return None;
}
if self.current_len() == self.max_len {
return self.finish();
}
if self.mask == 1 {
// at the beginning of a byte => try to skip it all together
match (self.on_region, self.current_byte) {
(true, &255u8) => {
self.len = std::cmp::min(self.max_len - self.start, self.len + 8);
if let Some(v) = self.values.next() {
self.current_byte = v;
};
continue;
}
(false, &0) => {
self.len = std::cmp::min(self.max_len - self.start, self.len + 8);
if let Some(v) = self.values.next() {
self.current_byte = v;
};
continue;
}
_ => (), // we need to run over all bits of this byte
}
};
let value = (self.current_byte & self.mask) != 0;
self.mask = self.mask.rotate_left(1);
match (self.on_region, value) {
(true, true) => self.len += 1,
(false, false) => self.len += 1,
(true, false) => {
self.on_region = false;
let result = (self.start, self.len);
self.start += self.len;
self.len = 1;
if self.mask == 1 {
// reached a new byte => try to fetch it from the iterator
if let Some(v) = self.values.next() {
self.current_byte = v;
};
}
return Some(result);
}
(false, true) => {
self.start += self.len;
self.len = 1;
self.on_region = true;
}
}
if self.mask == 1 {
// reached a new byte => try to fetch it from the iterator
match self.values.next() {
Some(v) => self.current_byte = v,
None => return self.finish(),
};
}
}
}
}