1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
use std::{collections::BTreeMap, time::Duration};
use ahash::{HashMap, HashSet};
use web_time::Instant;
use re_log_types::{
DataCell, EntityPath, EntityPathHash, ResolvedTimeRange, RowId, TimeInt, TimePoint, Timeline,
VecDequeRemovalExt as _,
};
use re_types_core::{ComponentName, SizeBytes as _};
use crate::{
store::{IndexedBucketInner, IndexedTable},
DataStore, DataStoreStats, StoreDiff, StoreDiffKind, StoreEvent,
};
// ---
#[derive(Debug, Clone, Copy)]
pub enum GarbageCollectionTarget {
/// Try to drop _at least_ the given fraction.
///
/// The fraction must be a float in the range [0.0 : 1.0].
DropAtLeastFraction(f64),
/// GC Everything that isn't protected
Everything,
}
#[derive(Debug, Clone)]
pub struct GarbageCollectionOptions {
/// What target threshold should the GC try to meet.
pub target: GarbageCollectionTarget,
/// How long the garbage collection in allowed to run for.
///
/// Trades off latency for throughput:
/// - A smaller `time_budget` will clear less data in a shorter amount of time, allowing for a
/// more responsive UI at the cost of more GC overhead and more frequent runs.
/// - A larger `time_budget` will clear more data in a longer amount of time, increasing the
/// chance of UI freeze frames but decreasing GC overhead and running less often.
///
/// The default is an unbounded time budget (i.e. throughput only).
pub time_budget: Duration,
/// How many component revisions to preserve on each timeline.
pub protect_latest: usize,
/// Whether to purge tables that no longer contain any data
pub purge_empty_tables: bool,
/// Components which should not be protected from GC when using `protect_latest`
pub dont_protect: HashSet<ComponentName>,
/// Whether to enable batched bucket drops.
///
/// Disabled by default as it is currently slower in most cases (somehow).
pub enable_batching: bool,
}
impl GarbageCollectionOptions {
pub fn gc_everything() -> Self {
GarbageCollectionOptions {
target: GarbageCollectionTarget::Everything,
time_budget: std::time::Duration::MAX,
protect_latest: 0,
purge_empty_tables: true,
dont_protect: Default::default(),
enable_batching: false,
}
}
}
impl std::fmt::Display for GarbageCollectionTarget {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
GarbageCollectionTarget::DropAtLeastFraction(p) => {
write!(f, "DropAtLeast({:.3}%)", *p * 100.0)
}
GarbageCollectionTarget::Everything => write!(f, "Everything"),
}
}
}
impl DataStore {
/// Triggers a garbage collection according to the desired `target`.
///
/// Garbage collection's performance is bounded by the number of buckets in each table (for
/// each `RowId`, we have to find the corresponding bucket, which is roughly `O(log(n))`) as
/// well as the number of rows in each of those buckets (for each `RowId`, we have to sort the
/// corresponding bucket (roughly `O(n*log(n))`) and then find the corresponding row (roughly
/// `O(log(n))`.
/// The size of the data itself has no impact on performance.
///
/// Returns the list of `RowId`s that were purged from the store.
///
/// ## Semantics
///
/// Garbage collection works on a row-level basis and is driven by [`RowId`] order,
/// i.e. the order defined by the clients' wall-clocks, allowing it to drop data across
/// the different timelines in a fair, deterministic manner.
/// Similarly, out-of-order data is supported out of the box.
///
/// The garbage collector doesn't deallocate data in and of itself: all it does is drop the
/// store's internal references to that data (the `DataCell`s), which will be deallocated once
/// their reference count reaches 0.
///
/// ## Limitations
///
/// The garbage collector has limited support for latest-at semantics. The configuration option:
/// [`GarbageCollectionOptions::protect_latest`] will protect the N latest values of each
/// component on each timeline. The only practical guarantee this gives is that a latest-at query
/// with a value of max-int will be unchanged. However, latest-at queries from other arbitrary
/// points in time may provide different results pre- and post- GC.
pub fn gc(&mut self, options: &GarbageCollectionOptions) -> (Vec<StoreEvent>, DataStoreStats) {
re_tracing::profile_function!();
self.gc_id += 1;
let stats_before = DataStoreStats::from_store(self);
let (initial_num_rows, initial_num_bytes) = stats_before.total_rows_and_bytes();
let protected_rows =
self.find_all_protected_rows(options.protect_latest, &options.dont_protect);
let mut diffs = match options.target {
GarbageCollectionTarget::DropAtLeastFraction(p) => {
assert!((0.0..=1.0).contains(&p));
let num_bytes_to_drop = initial_num_bytes * p;
let target_num_bytes = initial_num_bytes - num_bytes_to_drop;
re_log::trace!(
kind = "gc",
id = self.gc_id,
%options.target,
initial_num_rows = re_format::format_uint(initial_num_rows),
initial_num_bytes = re_format::format_bytes(initial_num_bytes),
target_num_bytes = re_format::format_bytes(target_num_bytes),
drop_at_least_num_bytes = re_format::format_bytes(num_bytes_to_drop),
"starting GC"
);
self.gc_drop_at_least_num_bytes(options, num_bytes_to_drop, &protected_rows)
}
GarbageCollectionTarget::Everything => {
re_log::trace!(
kind = "gc",
id = self.gc_id,
%options.target,
initial_num_rows = re_format::format_uint(initial_num_rows),
initial_num_bytes = re_format::format_bytes(initial_num_bytes),
"starting GC"
);
self.gc_drop_at_least_num_bytes(options, f64::INFINITY, &protected_rows)
}
};
if options.purge_empty_tables {
diffs.extend(self.purge_empty_tables());
}
#[cfg(debug_assertions)]
self.sanity_check().unwrap();
// NOTE: only temporal data and row metadata get purged!
let stats_after = DataStoreStats::from_store(self);
let (new_num_rows, new_num_bytes) = stats_after.total_rows_and_bytes();
re_log::trace!(
kind = "gc",
id = self.gc_id,
%options.target,
initial_num_rows = re_format::format_uint(initial_num_rows),
initial_num_bytes = re_format::format_bytes(initial_num_bytes),
new_num_rows = re_format::format_uint(new_num_rows),
new_num_bytes = re_format::format_bytes(new_num_bytes),
"GC done"
);
let stats_diff = stats_before - stats_after;
let events: Vec<_> = diffs
.into_iter()
.map(|diff| StoreEvent {
store_id: self.id.clone(),
store_generation: self.generation(),
event_id: self
.event_id
.fetch_add(1, std::sync::atomic::Ordering::Relaxed),
diff,
})
.collect();
{
if cfg!(debug_assertions) {
let any_event_other_than_deletion =
events.iter().any(|e| e.kind != StoreDiffKind::Deletion);
assert!(!any_event_other_than_deletion);
}
Self::on_events(&events);
}
(events, stats_diff)
}
/// Tries to drop _at least_ `num_bytes_to_drop` bytes of data from the store.
fn gc_drop_at_least_num_bytes(
&mut self,
options: &GarbageCollectionOptions,
mut num_bytes_to_drop: f64,
protected_rows: &HashSet<RowId>,
) -> Vec<StoreDiff> {
re_tracing::profile_function!();
let mut diffs = Vec::new();
// The algorithm is straightforward:
// 1. Accumulate a bunch of `RowId`s in ascending order, starting from the beginning of time.
// 2. Check if any `RowId` in the batch is protected, in which case the entire batch is
// considered protected and cannot be dropped all at once.
// 3. Send the batch to `drop_batch` to handle the actual deletion.
// 4. Removed the dropped rows from the metadata registry.
let batch_size = (self.config.indexed_bucket_num_rows as usize).saturating_mul(2);
let batch_size = batch_size.clamp(64, 4096);
let mut batch: Vec<(TimePoint, (EntityPathHash, RowId))> = Vec::with_capacity(batch_size);
let mut batch_is_protected = false;
let Self {
metadata_registry,
tables,
..
} = self;
let now = Instant::now();
for (&row_id, (timepoint, entity_path_hash)) in &metadata_registry.registry {
if protected_rows.contains(&row_id) {
batch_is_protected = true;
continue;
}
batch.push((timepoint.clone(), (*entity_path_hash, row_id)));
if batch.len() < batch_size {
continue;
}
let dropped = Self::drop_batch(
options,
tables,
&mut num_bytes_to_drop,
&batch,
batch_is_protected,
);
// Only decrement the metadata size trackers if we're actually certain that we'll drop
// that RowId in the end.
for dropped in dropped {
let metadata_dropped_size_bytes = dropped.row_id.total_size_bytes()
+ dropped.timepoint().total_size_bytes()
+ dropped.entity_path.hash().total_size_bytes();
metadata_registry.heap_size_bytes = metadata_registry
.heap_size_bytes
.checked_sub(metadata_dropped_size_bytes)
.unwrap_or_else(|| {
re_log::debug!(
entity_path = %dropped.entity_path,
current = metadata_registry.heap_size_bytes,
removed = metadata_dropped_size_bytes,
"book keeping underflowed"
);
u64::MIN
});
num_bytes_to_drop -= metadata_dropped_size_bytes as f64;
diffs.push(dropped);
}
if now.elapsed() >= options.time_budget || num_bytes_to_drop <= 0.0 {
break;
}
batch.clear();
batch_is_protected = false;
}
// Handle leftovers.
{
let dropped = Self::drop_batch(
options,
tables,
&mut num_bytes_to_drop,
&batch,
batch_is_protected,
);
// Only decrement the metadata size trackers if we're actually certain that we'll drop
// that RowId in the end.
for dropped in dropped {
let metadata_dropped_size_bytes = dropped.row_id.total_size_bytes()
+ dropped.timepoint().total_size_bytes()
+ dropped.entity_path.hash().total_size_bytes();
metadata_registry.heap_size_bytes = metadata_registry
.heap_size_bytes
.checked_sub(metadata_dropped_size_bytes)
.unwrap_or_else(|| {
re_log::debug!(
entity_path = %dropped.entity_path,
current = metadata_registry.heap_size_bytes,
removed = metadata_dropped_size_bytes,
"book keeping underflowed"
);
u64::MIN
});
num_bytes_to_drop -= metadata_dropped_size_bytes as f64;
diffs.push(dropped);
}
}
// Purge the removed rows from the metadata_registry.
// This is safe because the entire GC process is driven by RowId-order.
for diff in &diffs {
metadata_registry.remove(&diff.row_id);
}
diffs
}
#[allow(clippy::too_many_arguments, clippy::fn_params_excessive_bools)]
fn drop_batch(
options: &GarbageCollectionOptions,
tables: &mut BTreeMap<(EntityPathHash, Timeline), IndexedTable>,
num_bytes_to_drop: &mut f64,
batch: &[(TimePoint, (EntityPathHash, RowId))],
batch_is_protected: bool,
) -> Vec<StoreDiff> {
let &GarbageCollectionOptions {
enable_batching, ..
} = options;
let mut diffs = Vec::new();
// The algorithm is straightforward:
// 1. If the batch isn't protected, find and drop all buckets that are guaranteed to
// contain only rows older than the ones in the batch.
// 2. Check how many bytes were dropped; continue if we haven't met our objective.
// 3. Fallback to deletion of individual rows.
// 4. Check how many bytes were dropped; continue if we haven't met our objective.
// NOTE: The batch is already sorted by definition since it's extracted from the registry's btreemap.
let max_row_id = batch.last().map(|(_, (_, row_id))| *row_id);
if enable_batching && max_row_id.is_some() && !batch_is_protected {
// NOTE: unwrap cannot fail but just a precaution in case this code moves around…
let max_row_id = max_row_id.unwrap_or(RowId::ZERO);
let mut batch_removed: HashMap<RowId, StoreDiff> = HashMap::default();
let mut cur_entity_path_hash = None;
// NOTE: We _must_ go through all tables no matter what, since the batch might contain
// any number of distinct entities.
for ((entity_path_hash, _), table) in &mut *tables {
let (removed, num_bytes_removed) = table.try_drop_bucket(max_row_id);
*num_bytes_to_drop -= num_bytes_removed as f64;
if cur_entity_path_hash != Some(*entity_path_hash) {
diffs.extend(batch_removed.drain().map(|(_, diff)| diff));
cur_entity_path_hash = Some(*entity_path_hash);
}
for mut removed in removed {
batch_removed
.entry(removed.row_id)
.and_modify(|diff| {
diff.times.extend(std::mem::take(&mut removed.times));
})
.or_insert(removed);
}
}
diffs.extend(batch_removed.drain().map(|(_, diff)| diff));
}
if *num_bytes_to_drop <= 0.0 {
return diffs;
}
for (timepoint, (entity_path_hash, row_id)) in batch {
let mut diff: Option<StoreDiff> = None;
// find all tables that could possibly contain this `RowId`
for (&timeline, &time) in timepoint {
if let Some(table) = tables.get_mut(&(*entity_path_hash, timeline)) {
let (removed, num_bytes_removed) = table.try_drop_row(*row_id, time);
if let Some(inner) = diff.as_mut() {
if let Some(removed) = removed {
inner.times.extend(removed.times);
}
} else {
diff = removed;
}
*num_bytes_to_drop -= num_bytes_removed as f64;
}
}
diffs.extend(diff);
if *num_bytes_to_drop <= 0.0 {
break;
}
}
diffs
}
/// For each `EntityPath`, `Timeline`, `Component` find the N latest [`RowId`]s.
//
// TODO(jleibs): More complex functionality might required expanding this to also
// *ignore* specific entities, components, timelines, etc. for this protection.
//
// TODO(jleibs): `RowId`s should never overlap between entities. Creating a single large
// HashSet might actually be sub-optimal here. Consider switching to a map of
// `EntityPath` -> `HashSet<RowId>`.
// Update: this is true-er than ever before now that RowIds are truly unique!
fn find_all_protected_rows(
&mut self,
target_count: usize,
dont_protect: &HashSet<ComponentName>,
) -> HashSet<RowId> {
re_tracing::profile_function!();
if target_count == 0 {
return Default::default();
}
// We need to sort to be able to determine latest-at.
self.sort_indices_if_needed();
let mut protected_rows: HashSet<RowId> = Default::default();
// Find all protected rows in regular indexed tables
for table in self.tables.values() {
let mut components_to_find: HashMap<ComponentName, usize> = table
.all_components
.iter()
.filter(|c| !dont_protect.contains(*c))
.map(|c| (*c, target_count))
.collect();
for bucket in table.buckets.values().rev() {
for (component, count) in &mut components_to_find {
if *count == 0 {
continue;
}
let inner = bucket.inner.read();
// TODO(jleibs): If the entire column for a component is empty, we should
// make sure the column is dropped so we don't have to iterate over a
// bunch of Nones.
if let Some(column) = inner.columns.get(component) {
for row in column
.iter()
.enumerate()
.rev()
.filter_map(|(row_index, cell)| {
cell.as_ref().and_then(|_| inner.col_row_id.get(row_index))
})
.take(*count)
{
*count -= 1;
protected_rows.insert(*row);
}
}
}
}
}
protected_rows
}
/// Remove any tables which contain only components which are empty.
// TODO(jleibs): We could optimize this further by also erasing empty columns.
fn purge_empty_tables(&mut self) -> impl Iterator<Item = StoreDiff> {
re_tracing::profile_function!();
let mut diffs: BTreeMap<RowId, StoreDiff> = BTreeMap::default();
self.tables.retain(|_, table| {
// If any bucket has a non-empty component in any column, we keep it…
for bucket in table.buckets.values() {
let inner = bucket.inner.read();
for column in inner.columns.values() {
if column
.iter()
.any(|cell| cell.as_ref().map_or(false, |cell| cell.num_instances() > 0))
{
return true;
}
}
}
// …otherwise we can drop it.
let entity_path = table.entity_path.clone();
for bucket in table.buckets.values() {
let mut inner = bucket.inner.write();
for i in 0..inner.col_row_id.len() {
let row_id = inner.col_row_id[i];
let time = inner.col_time[i];
let diff = diffs
.entry(row_id)
.or_insert_with(|| StoreDiff::deletion(row_id, entity_path.clone()));
diff.times
.push((bucket.timeline, TimeInt::new_temporal(time)));
for column in &mut inner.columns.values_mut() {
let cell = column[i].take();
if let Some(cell) = cell {
diff.insert(cell);
}
}
}
}
false
});
diffs.into_values()
}
}
impl IndexedTable {
/// Try to drop an entire bucket at once if it doesn't contain any `RowId` greater than `max_row_id`.
fn try_drop_bucket(&mut self, max_row_id: RowId) -> (Vec<StoreDiff>, u64) {
re_tracing::profile_function!();
let entity_path = self.entity_path.clone();
let timeline = self.timeline;
let mut diffs: Vec<StoreDiff> = Vec::new();
let mut dropped_num_bytes = 0u64;
let mut dropped_num_rows = 0u64;
let mut dropped_bucket_times = HashSet::default();
// TODO(cmc): scaling linearly with the number of buckets could be improved, although this
// is quite fast in practice because of the early check.
for (bucket_time, bucket) in &self.buckets {
let inner = &mut *bucket.inner.write();
if inner.col_time.is_empty() || max_row_id < inner.max_row_id {
continue;
}
let IndexedBucketInner {
mut col_time,
mut col_row_id,
mut columns,
size_bytes,
..
} = std::mem::take(inner);
dropped_bucket_times.insert(*bucket_time);
while let Some(row_id) = col_row_id.pop_front() {
let mut diff = StoreDiff::deletion(row_id, entity_path.clone());
if let Some(time) = col_time.pop_front() {
diff.times.push((timeline, TimeInt::new_temporal(time)));
}
for (component_name, column) in &mut columns {
if let Some(cell) = column.pop_front().flatten() {
diff.cells.insert(*component_name, cell);
}
}
diffs.push(diff);
}
dropped_num_bytes += size_bytes;
dropped_num_rows += col_time.len() as u64;
}
self.buckets
.retain(|bucket_time, _| !dropped_bucket_times.contains(bucket_time));
self.uphold_indexing_invariants();
self.buckets_num_rows -= dropped_num_rows;
self.buckets_size_bytes -= dropped_num_bytes;
(diffs, dropped_num_bytes)
}
/// Tries to drop the given `row_id` from the table, which is expected to be found at the
/// specified `time`.
///
/// Returns how many bytes were actually dropped, or zero if the row wasn't found.
fn try_drop_row(&mut self, row_id: RowId, time: TimeInt) -> (Option<StoreDiff>, u64) {
re_tracing::profile_function!();
let entity_path = self.entity_path.clone();
let timeline = self.timeline;
let table_has_more_than_one_bucket = self.buckets.len() > 1;
let (bucket_key, bucket) = self.find_bucket_mut(time);
let bucket_num_bytes = bucket.total_size_bytes();
let (diff, mut dropped_num_bytes) = {
let inner = &mut *bucket.inner.write();
inner.try_drop_row(row_id, timeline, &entity_path, time)
};
// NOTE: We always need to keep at least one bucket alive, otherwise we have
// nowhere to write to.
if table_has_more_than_one_bucket && bucket.num_rows() == 0 {
// NOTE: We're dropping the bucket itself in this case, rather than just its
// contents.
debug_assert!(
dropped_num_bytes <= bucket_num_bytes,
"Bucket contained more bytes than it thought"
);
dropped_num_bytes = bucket_num_bytes;
self.buckets.remove(&bucket_key);
self.uphold_indexing_invariants();
}
self.buckets_size_bytes -= dropped_num_bytes;
self.buckets_num_rows -= (dropped_num_bytes > 0) as u64;
(diff, dropped_num_bytes)
}
}
impl IndexedBucketInner {
/// Tries to drop the given `row_id` from the table, which is expected to be found at the
/// specified `time`.
///
/// Returns how many bytes were actually dropped, or zero if the row wasn't found.
fn try_drop_row(
&mut self,
row_id: RowId,
timeline: Timeline,
entity_path: &EntityPath,
time: TimeInt,
) -> (Option<StoreDiff>, u64) {
self.sort();
let IndexedBucketInner {
is_sorted,
time_range,
col_time,
col_insert_id,
col_row_id,
max_row_id,
columns,
size_bytes,
} = self;
let mut diff: Option<StoreDiff> = None;
let mut dropped_num_bytes = 0u64;
let mut row_index = col_time.partition_point(|&time2| time2 < time.as_i64());
while col_time.get(row_index) == Some(&time.as_i64()) {
if col_row_id[row_index] != row_id {
row_index += 1;
continue;
}
// Update the time_range min/max:
if col_time.len() == 1 {
// We removed the last row
*time_range = ResolvedTimeRange::EMPTY;
} else {
*is_sorted = row_index == 0 || row_index.saturating_add(1) == col_row_id.len();
// We have at least two rows, so we can safely [index] here:
if row_index == 0 {
// We removed the first row, so the second row holds the new min
time_range.set_min(col_time[1]);
}
if row_index + 1 == col_time.len() {
// We removed the last row, so the penultimate row holds the new max
time_range.set_max(col_time[row_index - 1]);
}
}
// col_row_id
let Some(removed_row_id) = col_row_id.swap_remove(row_index) else {
continue;
};
debug_assert_eq!(row_id, removed_row_id);
dropped_num_bytes += removed_row_id.total_size_bytes();
// col_time
if let Some(row_time) = col_time.swap_remove(row_index) {
dropped_num_bytes += row_time.total_size_bytes();
}
// col_insert_id (if present)
if !col_insert_id.is_empty() {
if let Some(insert_id) = col_insert_id.swap_remove(row_index) {
dropped_num_bytes += insert_id.total_size_bytes();
}
}
// each data column
for column in columns.values_mut() {
let cell = column.0.swap_remove(row_index).flatten();
// TODO(#1809): once datatype deduplication is in, we should really not count
// autogenerated keys as part of the memory stats (same on write path).
dropped_num_bytes += cell.total_size_bytes();
if let Some(cell) = cell {
if let Some(inner) = diff.as_mut() {
inner.insert(cell);
} else {
let mut d = StoreDiff::deletion(removed_row_id, entity_path.clone());
d.at_timestamp(timeline, time);
d.insert(cell);
diff = Some(d);
}
}
}
if *max_row_id == removed_row_id {
// NOTE: We _have_ to fullscan here: the bucket is sorted by `(Time, RowId)`, there
// could very well be a greater lurking in a lesser entry.
*max_row_id = col_row_id.iter().max().copied().unwrap_or(RowId::ZERO);
}
// NOTE: A single `RowId` cannot possibly have more than one datapoint for
// a single timeline.
break;
}
*size_bytes -= dropped_num_bytes;
(diff, dropped_num_bytes)
}
}
// ---
impl StoreDiff {
fn insert(&mut self, cell: DataCell) {
self.cells.insert(cell.component_name(), cell);
}
}