1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
use std::collections::VecDeque;
use std::io::Cursor;
use std::io::Read;

use re_build_info::CrateVersion;
use re_log_types::LogMsg;

use crate::decoder::read_options;
use crate::Compression;
use crate::FileHeader;
use crate::MessageHeader;

use super::{DecodeError, VersionPolicy};

/// The stream decoder is a state machine which ingests byte chunks
/// and outputs messages once it has enough data to deserialize one.
///
/// Chunks are given to the stream via `StreamDecoder::push_chunk`,
/// and messages are read back via `StreamDecoder::try_read`.
pub struct StreamDecoder {
    /// The Rerun version used to encode the RRD data.
    ///
    /// `None` until a Rerun header has been processed.
    version: Option<CrateVersion>,

    /// How to handle version mismatches
    version_policy: VersionPolicy,

    /// Compression options
    compression: Compression,

    /// Incoming chunks are stored here
    chunks: ChunkBuffer,

    /// The uncompressed bytes are stored in this buffer before being read by `rmp_serde`
    uncompressed: Vec<u8>,

    /// The stream state
    state: State,
}

///
/// ```text,ignore
/// StreamHeader
///      |
///      v
/// MessageHeader
/// ^           |
/// |           |
/// ---Message<--
/// ```
#[derive(Clone, Copy)]
enum State {
    /// The beginning of the stream.
    ///
    /// The stream header contains the magic bytes (e.g. `RRF2`),
    /// the encoded version, and the encoding options.
    ///
    /// After the stream header is read once, the state machine
    /// will only ever switch between `MessageHeader` and `Message`
    StreamHeader,

    /// The beginning of a message.
    ///
    /// The message header contains the number of bytes in the
    /// compressed message, and the number of bytes in the
    /// uncompressed message.
    MessageHeader,

    /// The message content.
    ///
    /// We need to know the full length of the message before attempting
    /// to read it, otherwise the call to `decompress_into` or the
    /// MessagePack deserialization may block or even fail.
    Message(MessageHeader),
}

impl StreamDecoder {
    pub fn new(version_policy: VersionPolicy) -> Self {
        Self {
            version: None,
            version_policy,
            compression: Compression::Off,
            chunks: ChunkBuffer::new(),
            uncompressed: Vec::with_capacity(1024),
            state: State::StreamHeader,
        }
    }

    pub fn push_chunk(&mut self, chunk: Vec<u8>) {
        self.chunks.push(chunk);
    }

    pub fn try_read(&mut self) -> Result<Option<LogMsg>, DecodeError> {
        match self.state {
            State::StreamHeader => {
                if let Some(header) = self.chunks.try_read(FileHeader::SIZE) {
                    // header contains version and compression options
                    let (version, options) = read_options(self.version_policy, header)?;
                    self.version = Some(version);
                    self.compression = options.compression;

                    // we might have data left in the current chunk,
                    // immediately try to read length of the next message
                    self.state = State::MessageHeader;
                    return self.try_read();
                }
            }
            State::MessageHeader => {
                if let Some(mut len) = self.chunks.try_read(MessageHeader::SIZE) {
                    let header = MessageHeader::decode(&mut len)?;
                    self.state = State::Message(header);
                    // we might have data left in the current chunk,
                    // immediately try to read the message content
                    return self.try_read();
                }
            }
            State::Message(header) => {
                if let Some(bytes) = self.chunks.try_read(header.compressed_len as usize) {
                    let bytes = match self.compression {
                        Compression::Off => bytes,
                        Compression::LZ4 => {
                            self.uncompressed
                                .resize(header.uncompressed_len as usize, 0);
                            lz4_flex::block::decompress_into(bytes, &mut self.uncompressed)
                                .map_err(DecodeError::Lz4)?;
                            &self.uncompressed
                        }
                    };

                    // read the message from the uncompressed bytes
                    let message = rmp_serde::from_slice(bytes).map_err(DecodeError::MsgPack)?;

                    self.state = State::MessageHeader;

                    return if let re_log_types::LogMsg::SetStoreInfo(mut msg) = message {
                        // Propagate the protocol version from the header into the `StoreInfo` so that all
                        // parts of the app can easily access it.
                        msg.info.store_version = self.version;
                        Ok(Some(re_log_types::LogMsg::SetStoreInfo(msg)))
                    } else {
                        Ok(Some(message))
                    };
                }
            }
        }

        Ok(None)
    }
}

type Chunk = Cursor<Vec<u8>>;

struct ChunkBuffer {
    /// Any incoming chunks are queued until they are emptied
    queue: VecDeque<Chunk>,

    /// This buffer is used as scratch space for any read bytes,
    /// so that we can return a contiguous slice from `try_read`.
    buffer: Vec<u8>,

    /// How many bytes of valid data are currently in `self.buffer`.
    buffer_fill: usize,
}

impl ChunkBuffer {
    fn new() -> Self {
        Self {
            queue: VecDeque::with_capacity(16),
            buffer: Vec::with_capacity(1024),
            buffer_fill: 0,
        }
    }

    fn push(&mut self, chunk: Vec<u8>) {
        if chunk.is_empty() {
            return;
        }
        self.queue.push_back(Chunk::new(chunk));
    }

    /// Attempt to read exactly `n` bytes out of the queued chunks.
    ///
    /// Returns `None` if there is not enough data to return a slice of `n` bytes.
    ///
    /// NOTE: `try_read` *must* be called with the same `n` until it returns `Some`,
    /// otherwise this will discard any previously buffered data.
    fn try_read(&mut self, n: usize) -> Option<&[u8]> {
        // resize the buffer if the target has changed
        if self.buffer.len() != n {
            assert_eq!(
                self.buffer_fill, 0,
                "`try_read` called with different `n` for incomplete read"
            );
            self.buffer.resize(n, 0);
            self.buffer_fill = 0;
        }

        // try to read some bytes from the front of the queue,
        // until either:
        // - we've read enough to return a slice of `n` bytes
        // - we run out of chunks to read
        // while also discarding any empty chunks
        while self.buffer_fill != n {
            if let Some(chunk) = self.queue.front_mut() {
                let remainder = &mut self.buffer[self.buffer_fill..];
                self.buffer_fill += chunk.read(remainder).expect("failed to read from chunk");
                if is_chunk_empty(chunk) {
                    self.queue.pop_front();
                }
            } else {
                break;
            }
        }

        if self.buffer_fill == n {
            // ensure that a successful call to `try_read(N)`
            // followed by another call to `try_read(N)` with the same `N`
            // won't erroneously return the same bytes
            self.buffer_fill = 0;

            Some(&self.buffer[..])
        } else {
            None
        }
    }
}

fn is_chunk_empty(chunk: &Chunk) -> bool {
    chunk.position() >= chunk.get_ref().len() as u64
}

#[cfg(test)]
mod tests {
    use re_log_types::ApplicationId;
    use re_log_types::RowId;
    use re_log_types::SetStoreInfo;
    use re_log_types::StoreId;
    use re_log_types::StoreInfo;
    use re_log_types::StoreKind;
    use re_log_types::StoreSource;
    use re_log_types::Time;

    use crate::encoder::Encoder;
    use crate::EncodingOptions;

    use super::*;

    fn fake_log_msg() -> LogMsg {
        LogMsg::SetStoreInfo(SetStoreInfo {
            row_id: RowId::ZERO,
            info: StoreInfo {
                application_id: ApplicationId::unknown(),
                store_id: StoreId::from_string(StoreKind::Recording, "test".into()),
                cloned_from: None,
                is_official_example: false,
                started: Time::from_ns_since_epoch(0),
                store_source: StoreSource::Unknown,
                store_version: Some(CrateVersion::LOCAL),
            },
        })
    }

    fn test_data(options: EncodingOptions, n: usize) -> (Vec<LogMsg>, Vec<u8>) {
        let messages: Vec<_> = (0..n).map(|_| fake_log_msg()).collect();

        let mut buffer = Vec::new();
        let mut encoder = Encoder::new(CrateVersion::LOCAL, options, &mut buffer).unwrap();
        for message in &messages {
            encoder.append(message).unwrap();
        }

        (messages, buffer)
    }

    macro_rules! assert_message_ok {
        ($message:expr) => {{
            match $message {
                Ok(Some(message)) => {
                    assert_eq!(&fake_log_msg(), &message);
                    message
                }
                Ok(None) => {
                    panic!("failed to read message: message could not be read in full");
                }
                Err(err) => {
                    panic!("failed to read message: {err}");
                }
            }
        }};
    }

    macro_rules! assert_message_incomplete {
        ($message:expr) => {{
            match $message {
                Ok(None) => {}
                Ok(Some(message)) => {
                    panic!("expected message to be incomplete, instead received: {message:?}");
                }
                Err(err) => {
                    panic!("failed to read message: {err}");
                }
            }
        }};
    }

    #[test]
    fn stream_whole_chunks_uncompressed() {
        let (input, data) = test_data(EncodingOptions::UNCOMPRESSED, 16);

        let mut decoder = StreamDecoder::new(VersionPolicy::Error);

        assert_message_incomplete!(decoder.try_read());

        decoder.push_chunk(data);

        let decoded_messages: Vec<_> = (0..16)
            .map(|_| assert_message_ok!(decoder.try_read()))
            .collect();

        assert_eq!(input, decoded_messages);
    }

    #[test]
    fn stream_byte_chunks_uncompressed() {
        let (input, data) = test_data(EncodingOptions::UNCOMPRESSED, 16);

        let mut decoder = StreamDecoder::new(VersionPolicy::Error);

        assert_message_incomplete!(decoder.try_read());

        for chunk in data.chunks(1) {
            decoder.push_chunk(chunk.to_vec());
        }

        let decoded_messages: Vec<_> = (0..16)
            .map(|_| assert_message_ok!(decoder.try_read()))
            .collect();

        assert_eq!(input, decoded_messages);
    }

    #[test]
    fn stream_whole_chunks_compressed() {
        let (input, data) = test_data(EncodingOptions::COMPRESSED, 16);

        let mut decoder = StreamDecoder::new(VersionPolicy::Error);

        assert_message_incomplete!(decoder.try_read());

        decoder.push_chunk(data);

        let decoded_messages: Vec<_> = (0..16)
            .map(|_| assert_message_ok!(decoder.try_read()))
            .collect();

        assert_eq!(input, decoded_messages);
    }

    #[test]
    fn stream_byte_chunks_compressed() {
        let (input, data) = test_data(EncodingOptions::COMPRESSED, 16);

        let mut decoder = StreamDecoder::new(VersionPolicy::Error);

        assert_message_incomplete!(decoder.try_read());

        for chunk in data.chunks(1) {
            decoder.push_chunk(chunk.to_vec());
        }

        let decoded_messages: Vec<_> = (0..16)
            .map(|_| assert_message_ok!(decoder.try_read()))
            .collect();

        assert_eq!(input, decoded_messages);
    }

    #[test]
    fn stream_3x16_chunks() {
        let (input, data) = test_data(EncodingOptions::COMPRESSED, 16);

        let mut decoder = StreamDecoder::new(VersionPolicy::Error);
        let mut decoded_messages = vec![];

        // keep pushing 3 chunks of 16 bytes at a time, and attempting to read messages
        // until there are no more chunks
        let mut chunks = data.chunks(16).peekable();
        while chunks.peek().is_some() {
            for _ in 0..3 {
                if let Some(chunk) = chunks.next() {
                    decoder.push_chunk(chunk.to_vec());
                } else {
                    break;
                }
            }

            if let Some(message) = decoder.try_read().unwrap() {
                decoded_messages.push(message);
            }
        }

        assert_eq!(input, decoded_messages);
    }

    #[test]
    fn stream_irregular_chunks() {
        // this attempts to stress-test `try_read` with chunks of various sizes

        let (input, data) = test_data(EncodingOptions::COMPRESSED, 16);
        let mut data = Cursor::new(data);

        let mut decoder = StreamDecoder::new(VersionPolicy::Error);
        let mut decoded_messages = vec![];

        // read chunks 2xN bytes at a time, where `N` comes from a regular pattern
        // this is slightly closer to using random numbers while still being
        // fully deterministic

        let pattern = [0, 3, 4, 70, 31];
        let mut pattern_index = 0;
        let mut temp = [0_u8; 71];

        while data.position() < data.get_ref().len() as u64 {
            for _ in 0..2 {
                let n = data.read(&mut temp[..pattern[pattern_index]]).unwrap();
                pattern_index = (pattern_index + 1) % pattern.len();
                decoder.push_chunk(temp[..n].to_vec());
            }

            if let Some(message) = decoder.try_read().unwrap() {
                decoded_messages.push(message);
            }
        }

        assert_eq!(input, decoded_messages);
    }

    #[test]
    fn chunk_buffer_read_single_chunk() {
        // reading smaller `n` from multiple larger chunks

        let mut buffer = ChunkBuffer::new();

        let data = &[0, 1, 2, 3, 4];
        assert_eq!(None, buffer.try_read(1));
        buffer.push(data.to_vec());
        assert_eq!(Some(&data[..3]), buffer.try_read(3));
        assert_eq!(Some(&data[3..]), buffer.try_read(2));
        assert_eq!(None, buffer.try_read(1));
    }

    #[test]
    fn chunk_buffer_read_multi_chunk() {
        // reading a large `n` from multiple smaller chunks

        let mut buffer = ChunkBuffer::new();

        let chunks: &[&[u8]] = &[&[0, 1, 2], &[3, 4]];

        assert_eq!(None, buffer.try_read(1));
        buffer.push(chunks[0].to_vec());
        assert_eq!(None, buffer.try_read(5));
        buffer.push(chunks[1].to_vec());
        assert_eq!(Some(&[0, 1, 2, 3, 4][..]), buffer.try_read(5));
        assert_eq!(None, buffer.try_read(1));
    }

    #[test]
    fn chunk_buffer_read_same_n() {
        // reading the same `n` multiple times should not return the same bytes

        let mut buffer = ChunkBuffer::new();

        let data = &[0, 1, 2, 3];
        buffer.push(data.to_vec());
        assert_eq!(data, buffer.try_read(4).unwrap());
        assert_eq!(None, buffer.try_read(4));
        let data = &[4, 5, 6, 7];
        buffer.push(data.to_vec());
        assert_eq!(data, buffer.try_read(4).unwrap());
        assert_eq!(None, buffer.try_read(4));
    }
}