1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
use std::{collections::VecDeque, ops::Range};
use itertools::Itertools as _;
use re_types_core::SizeBytes;
// ---
/// A [`FlatVecDeque`] that can be erased into a trait object.
///
/// Methods that don't require monomorphization over `T` are made dynamically dispatchable.
pub trait ErasedFlatVecDeque: std::any::Any {
fn as_any(&self) -> &dyn std::any::Any;
fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
fn into_any(self: Box<Self>) -> Box<dyn std::any::Any>;
/// Dynamically dispatches to [`FlatVecDeque::clone`].
///
/// This is prefixed with `dyn_` to avoid method dispatch ambiguities that are very hard to
/// avoid even with explicit syntax and that silently lead to infinite recursions.
fn dyn_clone(&self) -> Box<dyn ErasedFlatVecDeque + Send + Sync>;
/// Dynamically dispatches to [`FlatVecDeque::num_entries`].
///
/// This is prefixed with `dyn_` to avoid method dispatch ambiguities that are very hard to
/// avoid even with explicit syntax and that silently lead to infinite recursions.
fn dyn_num_entries(&self) -> usize;
/// Dynamically dispatches to [`FlatVecDeque::num_values`].
///
/// This is prefixed with `dyn_` to avoid method dispatch ambiguities that are very hard to
/// avoid even with explicit syntax and that silently lead to infinite recursions.
fn dyn_num_values(&self) -> usize;
/// Dynamically dispatches to [`FlatVecDeque::remove`].
///
/// This is prefixed with `dyn_` to avoid method dispatch ambiguities that are very hard to
/// avoid even with explicit syntax and that silently lead to infinite recursions.
fn dyn_remove(&mut self, at: usize);
/// Dynamically dispatches to [`FlatVecDeque::remove`].
///
/// This is prefixed with `dyn_` to avoid method dispatch ambiguities that are very hard to
/// avoid even with explicit syntax and that silently lead to infinite recursions.
fn dyn_remove_range(&mut self, range: Range<usize>);
/// Dynamically dispatches to [`FlatVecDeque::truncate`].
///
/// This is prefixed with `dyn_` to avoid method dispatch ambiguities that are very hard to
/// avoid even with explicit syntax and that silently lead to infinite recursions.
fn dyn_truncate(&mut self, at: usize);
/// Dynamically dispatches to [`<FlatVecDeque<T> as SizeBytes>::total_size_bytes(self)`].
///
/// This is prefixed with `dyn_` to avoid method dispatch ambiguities that are very hard to
/// avoid even with explicit syntax and that silently lead to infinite recursions.
fn dyn_total_size_bytes(&self) -> u64;
}
impl<T: SizeBytes + 'static> ErasedFlatVecDeque for FlatVecDeque<T>
where
T: Send + Sync + Clone,
{
#[inline]
fn as_any(&self) -> &dyn std::any::Any {
self
}
#[inline]
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
#[inline]
fn dyn_clone(&self) -> Box<dyn ErasedFlatVecDeque + Send + Sync> {
Box::new((*self).clone())
}
#[inline]
fn into_any(self: Box<Self>) -> Box<dyn std::any::Any> {
self
}
#[inline]
fn dyn_num_entries(&self) -> usize {
self.num_entries()
}
#[inline]
fn dyn_num_values(&self) -> usize {
self.num_values()
}
#[inline]
fn dyn_remove(&mut self, at: usize) {
FlatVecDeque::<T>::remove(self, at);
}
#[inline]
fn dyn_remove_range(&mut self, range: Range<usize>) {
FlatVecDeque::<T>::remove_range(self, range);
}
#[inline]
fn dyn_truncate(&mut self, at: usize) {
FlatVecDeque::<T>::truncate(self, at);
}
#[inline]
fn dyn_total_size_bytes(&self) -> u64 {
<FlatVecDeque<T> as SizeBytes>::total_size_bytes(self)
}
}
// ---
/// A double-ended queue implemented with a pair of growable ring buffers, where every single
/// entry is a flattened array of values.
///
/// Logically like a `VecDeque<Box<[T]>>`, but with a less fragmented memory layout (each `Box<[T]>`
/// gets copied/inlined into the `FlatVecDeque`).
/// `FlatVecDeque` therefore optimizes for reads (cache locality, specifically) while `VecDeque<Box<[T]>>`
/// optimizes for writes.
///
/// You can think of this as the native/deserialized version of an Arrow `ListArray`.
/// This is particularly useful when working with many small arrays of data (e.g. Rerun's `Scalar`s).
//
// TODO(cmc): We could even use a bitmap for T=Option<Something>, which would bring this that much
// closer to a deserialized version of an Arrow array.
#[derive(Debug, Clone)]
pub struct FlatVecDeque<T> {
/// Stores every value in the `FlatVecDeque` in a flattened `VecDeque`.
///
/// E.g.:
/// - `FlatVecDeque[]` -> values=`[]`.
/// - `FlatVecDeque[[], [], []]` -> values=`[]`.
/// - `FlatVecDeque[[], [0], [1, 2, 3], [4, 5]]` -> values=`[0, 1, 2, 3, 4, 5]`.
values: VecDeque<T>,
/// Keeps track of each entry, i.e. logical slices of data.
///
/// E.g.:
/// - `FlatVecDeque[]` -> offsets=`[]`.
/// - `FlatVecDeque[[], [], []]` -> offsets=`[0, 0, 0]`.
/// - `FlatVecDeque[[], [0], [1, 2, 3], [4, 5]]` -> offsets=`[0, 1, 4, 6]`.
offsets: VecDeque<usize>,
}
impl<T: SizeBytes> SizeBytes for FlatVecDeque<T> {
#[inline]
fn heap_size_bytes(&self) -> u64 {
// NOTE: It's all on the heap at this point.
let values_size_bytes = if T::is_pod() {
(self.num_values() * std::mem::size_of::<T>()) as _
} else {
self.values
.iter()
.map(SizeBytes::total_size_bytes)
.sum::<u64>()
};
let offsets_size_bytes = self.num_entries() * std::mem::size_of::<usize>();
values_size_bytes + offsets_size_bytes as u64
}
}
impl<T> From<VecDeque<T>> for FlatVecDeque<T> {
#[inline]
fn from(values: VecDeque<T>) -> Self {
let num_values = values.len();
Self {
values,
offsets: std::iter::once(num_values).collect(),
}
}
}
impl<T> From<Vec<T>> for FlatVecDeque<T> {
#[inline]
fn from(values: Vec<T>) -> Self {
let num_values = values.len();
Self {
values: values.into(),
offsets: std::iter::once(num_values).collect(),
}
}
}
impl<T> Default for FlatVecDeque<T> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<T> FlatVecDeque<T> {
#[inline]
pub const fn new() -> Self {
Self {
values: VecDeque::new(),
offsets: VecDeque::new(),
}
}
#[inline]
pub fn from_vecs(entries: impl IntoIterator<Item = Vec<T>>) -> Self {
let mut this = Self::new();
// NOTE: Do not use any of the insertion methods, they rely on `from_vecs` in the first
// place!
let mut value_offset = 0;
for entry in entries {
value_offset += entry.len(); // increment first!
this.offsets.push_back(value_offset);
this.values.extend(entry);
}
this
}
/// How many entries are there in the deque?
///
/// Keep in mind: each entry is itself an array of values.
/// Use [`Self::num_values`] to get the total number of values across all entries.
#[inline]
pub fn num_entries(&self) -> usize {
self.offsets.len()
}
/// How many values are there in the deque?
///
/// Keep in mind: each entry in the deque holds an array of values.
/// Use [`Self::num_entries`] to get the total number of entries, irrelevant of how many
/// values each entry holds.
#[inline]
pub fn num_values(&self) -> usize {
self.values.len()
}
#[inline]
fn value_offset(&self, entry_index: usize) -> usize {
if entry_index == 0 {
0
} else {
self.offsets[entry_index - 1]
}
}
#[inline]
fn iter_offset_ranges(&self) -> impl Iterator<Item = Range<usize>> + '_ {
std::iter::once(0)
.chain(self.offsets.iter().copied())
.tuple_windows::<(_, _)>()
.map(|(start, end)| (start..end))
}
}
// ---
impl<T> FlatVecDeque<T> {
/// Iterates over all the entries in the deque.
///
/// This is the same as `self.range(0..self.num_entries())`.
///
/// Keep in mind that each entry is an array of values!
#[inline]
pub fn iter(&self) -> impl Iterator<Item = &[T]> {
self.range(0..self.num_entries())
}
/// Iterates over all the entries in the deque in the given `entry_range`.
///
/// Keep in mind that each entry is an array of values!
#[inline]
pub fn range(&self, entry_range: Range<usize>) -> impl Iterator<Item = &[T]> {
let (values_left, values_right) = self.values.as_slices();
// NOTE: We can't slice into our offsets, we don't even know if they're contiguous in
// memory at this point -> skip() and take().
self.iter_offset_ranges()
.skip(entry_range.start)
.take(entry_range.len())
.map(|offsets| {
if offsets.is_empty() {
return &[] as &'_ [T];
}
// NOTE: We do not need `make_contiguous` here because we always guarantee
// that a single entry's worth of values is fully contained in either the left or
// right buffer, but never straddling across both.
if offsets.start < values_left.len() {
&values_left[offsets]
} else {
&values_right[offsets]
}
})
}
}
#[test]
fn range() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.insert_many(0, [vec![1, 2, 3], vec![4, 5, 6, 7], vec![8, 9, 10]]);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], &v);
assert_iter_eq(&[&[1, 2, 3]], v.range(0..1));
assert_iter_eq(&[&[4, 5, 6, 7]], v.range(1..2));
assert_iter_eq(&[&[8, 9, 10]], v.range(2..3));
assert_iter_eq(
&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]],
v.range(0..v.num_entries()),
);
assert_iter_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], v.iter());
}
// ---
impl<T> FlatVecDeque<T> {
/// Prepends an entry comprised of `values` to the deque.
///
/// This is the same as `self.insert(0, values)`.
///
/// See [`Self::insert`] for more information.
#[inline]
pub fn push_front(&mut self, values: impl IntoIterator<Item = T>) {
self.insert(0, values);
}
/// Appends an entry comprised of `values` to the deque.
///
/// This is the same as `self.insert(self.num_entries(), values)`.
///
/// See [`Self::insert`] for more information.
#[inline]
pub fn push_back(&mut self, values: impl IntoIterator<Item = T>) {
self.insert(self.num_entries(), values);
}
/// Inserts a single entry at `entry_index`, comprised of the multiple elements given as `values`.
///
/// This is O(1) if `entry_index` corresponds to either the start or the end of the deque.
/// Otherwise, this requires splitting the deque into two pieces then stitching them back together
/// at both ends of the added data.
///
/// Panics if `entry_index` is out of bounds.
/// Panics if `values` is empty.
#[inline]
pub fn insert(&mut self, entry_index: usize, values: impl IntoIterator<Item = T>) {
let values: VecDeque<T> = values.into_iter().collect();
let deque = values.into();
self.insert_deque(entry_index, deque);
}
/// Prepends multiple entries, each comprised of the multiple elements given in `entries`,
/// to the deque.
///
/// This is the same as `self.insert_many(0, entries)`.
///
/// See [`Self::insert_many`] for more information.
#[inline]
pub fn push_many_front(&mut self, entries: impl IntoIterator<Item = Vec<T>>) {
self.insert_many(0, entries);
}
/// Appends multiple entries, each comprised of the multiple elements given in `entries`,
/// to the deque.
///
/// This is the same as `self.insert_many(self.num_entries(), entries)`.
///
/// See [`Self::insert_many`] for more information.
#[inline]
pub fn push_many_back(&mut self, entries: impl IntoIterator<Item = Vec<T>>) {
self.insert_many(self.num_entries(), entries);
}
/// Inserts multiple entries, starting at `entry_index` onwards, each comprised of the multiple elements
/// given in `entries`.
///
/// This is O(1) if `entry_index` corresponds to either the start or the end of the deque.
/// Otherwise, this requires splitting the deque into two pieces then stitching them back together
/// at both ends of the added data.
///
/// Panics if `entry_index` is out of bounds.
/// Panics if any of the value arrays in `entries` is empty.
#[inline]
pub fn insert_many(&mut self, entry_index: usize, entries: impl IntoIterator<Item = Vec<T>>) {
let deque = Self::from_vecs(entries);
self.insert_deque(entry_index, deque);
}
/// Prepends another full deque to the deque.
///
/// This is the same as `self.insert_deque(0, rhs)`.
///
/// See [`Self::insert_deque`] for more information.
#[inline]
pub fn push_front_deque(&mut self, rhs: FlatVecDeque<T>) {
self.insert_deque(0, rhs);
}
/// Appends another full deque to the deque.
///
/// This is the same as `self.insert_deque(0, rhs)`.
///
/// See [`Self::insert_deque`] for more information.
#[inline]
pub fn push_back_deque(&mut self, rhs: FlatVecDeque<T>) {
self.insert_deque(self.num_entries(), rhs);
}
/// Inserts another full deque, starting at `entry_index` and onwards.
///
/// This is O(1) if `entry_index` corresponds to either the start or the end of the deque.
/// Otherwise, this requires splitting the deque into two pieces then stitching them back together
/// at both ends of the added data.
///
/// Panics if `entry_index` is out of bounds.
/// Panics if any of the value arrays in `entries` is empty.
pub fn insert_deque(&mut self, entry_index: usize, mut rhs: FlatVecDeque<T>) {
// NOTE: We're inserting _beyond_ the last element.
if entry_index == self.num_entries() {
let max_value_offset = self.offsets.back().copied().unwrap_or_default();
self.offsets
.extend(rhs.offsets.into_iter().map(|o| o + max_value_offset));
self.values.extend(rhs.values);
return;
} else if entry_index == 0 {
rhs.push_back_deque(std::mem::take(self));
*self = rhs;
return;
}
let right = self.split_off(entry_index);
self.push_back_deque(rhs);
self.push_back_deque(right);
debug_assert!(self.iter_offset_ranges().all(|r| r.start <= r.end));
}
}
#[test]
fn insert() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.insert(0, [1, 2, 3]);
assert_deque_eq(&[&[1, 2, 3]], &v);
v.insert(0, [4, 5, 6, 7]);
assert_deque_eq(&[&[4, 5, 6, 7], &[1, 2, 3]], &v);
v.insert(0, [8, 9]);
assert_deque_eq(&[&[8, 9], &[4, 5, 6, 7], &[1, 2, 3]], &v);
v.insert(2, [10, 11, 12, 13]);
assert_deque_eq(&[&[8, 9], &[4, 5, 6, 7], &[10, 11, 12, 13], &[1, 2, 3]], &v);
v.insert(v.num_entries(), [14, 15]);
assert_deque_eq(
&[
&[8, 9],
&[4, 5, 6, 7],
&[10, 11, 12, 13],
&[1, 2, 3],
&[14, 15],
],
&v,
);
v.insert(v.num_entries() - 1, [42]);
assert_deque_eq(
&[
&[8, 9],
&[4, 5, 6, 7],
&[10, 11, 12, 13],
&[1, 2, 3],
&[42],
&[14, 15],
],
&v,
);
}
#[test]
fn insert_empty() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.push_back([]);
v.push_back([]);
v.push_back([]);
assert_deque_eq(&[&[], &[], &[]], &v);
}
// Simulate the bug that was making everything crash on the face tracking example (ultimately
// caused by recursive clears).
#[test]
fn insert_some_and_empty() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.push_back([0]);
v.push_back([]);
v.push_back([1]);
v.push_back([]);
v.push_back([2]);
v.push_back([]);
// That used to crash.
assert_deque_eq(&[&[0], &[], &[1], &[], &[2], &[]], &v);
}
#[test]
fn insert_many() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.insert_many(0, [vec![1, 2, 3], vec![4, 5, 6, 7], vec![8, 9, 10]]);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], &v);
v.insert_many(0, [vec![20], vec![21], vec![22]]);
assert_deque_eq(
&[&[20], &[21], &[22], &[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]],
&v,
);
v.insert_many(4, [vec![41, 42], vec![43]]);
assert_deque_eq(
&[
&[20],
&[21],
&[22],
&[1, 2, 3],
&[41, 42],
&[43],
&[4, 5, 6, 7],
&[8, 9, 10],
],
&v,
);
v.insert_many(v.num_entries(), [vec![100], vec![200, 300, 400]]);
assert_deque_eq(
&[
&[20],
&[21],
&[22],
&[1, 2, 3],
&[41, 42],
&[43],
&[4, 5, 6, 7],
&[8, 9, 10],
&[100],
&[200, 300, 400],
],
&v,
);
}
#[test]
fn insert_deque() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.insert_deque(
0,
FlatVecDeque::from_vecs([vec![1, 2, 3], vec![4, 5, 6, 7], vec![8, 9, 10]]),
);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], &v);
v.insert_deque(0, FlatVecDeque::from_vecs([vec![20], vec![21], vec![22]]));
assert_deque_eq(
&[&[20], &[21], &[22], &[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]],
&v,
);
v.insert_deque(4, FlatVecDeque::from_vecs([vec![41, 42], vec![43]]));
assert_deque_eq(
&[
&[20],
&[21],
&[22],
&[1, 2, 3],
&[41, 42],
&[43],
&[4, 5, 6, 7],
&[8, 9, 10],
],
&v,
);
v.insert_deque(
v.num_entries(),
FlatVecDeque::from_vecs([vec![100], vec![200, 300, 400]]),
);
assert_deque_eq(
&[
&[20],
&[21],
&[22],
&[1, 2, 3],
&[41, 42],
&[43],
&[4, 5, 6, 7],
&[8, 9, 10],
&[100],
&[200, 300, 400],
],
&v,
);
}
// ---
impl<T> FlatVecDeque<T> {
/// Splits the deque into two at the given index.
///
/// Returns a newly allocated `FlatVecDeque`. `self` contains entries `[0, entry_index)`,
/// and the returned deque contains entries `[entry_index, num_entries)`.
///
/// Note that the capacity of `self` does not change.
///
/// Panics if `entry_index` is out of bounds.
#[inline]
#[must_use = "use `.truncate()` if you don't need the other half"]
pub fn split_off(&mut self, entry_index: usize) -> Self {
let value_offset = self.value_offset(entry_index);
let mut offsets = self.offsets.split_off(entry_index);
for offset in &mut offsets {
*offset -= value_offset;
}
Self {
values: self.values.split_off(value_offset),
offsets,
}
}
/// Shortens the deque, keeping all entries up to `entry_index` (excluded), and
/// dropping the rest.
///
/// If `entry_index` is greater or equal to [`Self::num_entries`], this has no effect.
#[inline]
pub fn truncate(&mut self, entry_index: usize) {
if entry_index < self.num_entries() {
self.values.truncate(self.value_offset(entry_index));
self.offsets.truncate(entry_index);
}
}
/// Removes the entry at `entry_index` from the deque.
///
/// This is O(1) if `entry_index` corresponds to either the start or the end of the deque.
/// Otherwise, this requires splitting the deque into three pieces, dropping the superfluous
/// one, then stitching the two remaining pices back together.
///
/// Panics if `entry_index` is out of bounds.
pub fn remove(&mut self, entry_index: usize) {
let (start_offset, end_offset) = (
self.value_offset(entry_index),
self.value_offset(entry_index + 1),
);
let offset_count = end_offset - start_offset;
if entry_index + 1 == self.num_entries() {
self.offsets.truncate(self.num_entries() - 1);
self.values.truncate(self.values.len() - offset_count);
return;
} else if entry_index == 0 {
*self = self.split_off(entry_index + 1);
return;
}
// NOTE: elegant, but way too slow :)
// let right = self.split_off(entry_index + 1);
// _ = self.split_off(self.num_entries() - 1);
// self.push_back_deque(right);
_ = self.offsets.remove(entry_index);
for offset in self.offsets.range_mut(entry_index..) {
*offset -= offset_count;
}
let right = self.values.split_off(end_offset);
self.values.truncate(self.values.len() - offset_count);
self.values.extend(right);
}
/// Removes all entries within the given `entry_range` from the deque.
///
/// This is O(1) if `entry_range` either starts at the beginning of the deque, or ends at
/// the end of the deque, or both.
/// Otherwise, this requires splitting the deque into three pieces, dropping the superfluous
/// one, then stitching the two remaining pieces back together.
///
/// Panics if `entry_range` is either out of bounds or isn't monotonically increasing.
#[inline]
pub fn remove_range(&mut self, entry_range: Range<usize>) {
assert!(entry_range.start <= entry_range.end);
if entry_range.start == entry_range.end {
return;
}
let (start_offset, end_offset) = (
self.value_offset(entry_range.start),
self.value_offset(entry_range.end),
);
let offset_count = end_offset - start_offset;
// Reminder: `entry_range.end` is exclusive.
if entry_range.end == self.num_entries() {
self.offsets
.truncate(self.num_entries() - entry_range.len());
self.values.truncate(self.values.len() - offset_count);
return;
} else if entry_range.start == 0 {
*self = self.split_off(entry_range.end);
return;
}
let right = self.split_off(entry_range.end);
_ = self.split_off(self.num_entries() - entry_range.len());
self.push_back_deque(right);
}
}
#[test]
fn truncate() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.insert_many(0, [vec![1, 2, 3], vec![4, 5, 6, 7], vec![8, 9, 10]]);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], &v);
{
let mut v = v.clone();
v.truncate(0);
assert_deque_eq(&[], &v);
}
{
let mut v = v.clone();
v.truncate(1);
assert_deque_eq(&[&[1, 2, 3]], &v);
}
{
let mut v = v.clone();
v.truncate(2);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7]], &v);
}
{
let mut v = v.clone();
v.truncate(3);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], &v);
}
}
#[test]
fn split_off() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.insert_many(0, [vec![1, 2, 3], vec![4, 5, 6, 7], vec![8, 9, 10]]);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], &v);
{
let mut left = v.clone();
let right = left.split_off(0);
assert_deque_eq(&[], &left);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], &right);
}
{
let mut left = v.clone();
let right = left.split_off(1);
assert_deque_eq(&[&[1, 2, 3]], &left);
assert_deque_eq(&[&[4, 5, 6, 7], &[8, 9, 10]], &right);
}
{
let mut left = v.clone();
let right = left.split_off(2);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7]], &left);
assert_deque_eq(&[&[8, 9, 10]], &right);
}
{
let mut left = v.clone();
let right = left.split_off(3);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], &left);
assert_deque_eq(&[], &right);
}
}
#[test]
fn remove() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.insert(0, [1, 2, 3]);
assert_deque_eq(&[&[1, 2, 3]], &v);
v.remove(0);
assert_deque_eq(&[], &v);
v.insert(0, [1, 2, 3]);
assert_deque_eq(&[&[1, 2, 3]], &v);
v.insert(1, [4, 5, 6, 7]);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7]], &v);
v.insert(2, [8, 9]);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9]], &v);
v.remove(0);
assert_deque_eq(&[&[4, 5, 6, 7], &[8, 9]], &v);
v.insert(0, [1, 2, 3]);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9]], &v);
v.remove(1);
assert_deque_eq(&[&[1, 2, 3], &[8, 9]], &v);
v.insert(1, [4, 5, 6, 7]);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9]], &v);
v.remove(2);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7]], &v);
v.remove(0);
assert_deque_eq(&[&[4, 5, 6, 7]], &v);
v.remove(0);
assert_deque_eq(&[], &v);
}
#[test]
#[should_panic(expected = "Out of bounds access")]
fn remove_empty() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.remove(0);
}
#[test]
#[should_panic(expected = "Out of bounds access")]
fn remove_oob() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.insert(0, [1, 2, 3]);
assert_deque_eq(&[&[1, 2, 3]], &v);
assert_eq!(1, v.num_entries());
assert_eq!(3, v.num_values());
v.remove(1);
}
#[test]
fn remove_range() {
let mut v: FlatVecDeque<i64> = FlatVecDeque::new();
assert_eq!(0, v.num_entries());
assert_eq!(0, v.num_values());
v.insert_many(0, [vec![1, 2, 3], vec![4, 5, 6, 7], vec![8, 9, 10]]);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7], &[8, 9, 10]], &v);
{
let mut v = v.clone();
v.remove_range(0..1);
assert_deque_eq(&[&[4, 5, 6, 7], &[8, 9, 10]], &v);
}
{
let mut v = v.clone();
v.remove_range(1..2);
assert_deque_eq(&[&[1, 2, 3], &[8, 9, 10]], &v);
}
{
let mut v = v.clone();
v.remove_range(2..3);
assert_deque_eq(&[&[1, 2, 3], &[4, 5, 6, 7]], &v);
}
{
let mut v = v.clone();
v.remove_range(0..2);
assert_deque_eq(&[&[8, 9, 10]], &v);
}
{
let mut v = v.clone();
v.remove_range(1..3);
assert_deque_eq(&[&[1, 2, 3]], &v);
}
{
let mut v = v.clone();
v.remove_range(0..3);
assert_deque_eq(&[], &v);
}
}
// ---
#[cfg(test)]
fn assert_deque_eq(expected: &[&'_ [i64]], got: &FlatVecDeque<i64>) {
similar_asserts::assert_eq!(expected, got.iter().collect_vec());
}
#[cfg(test)]
fn assert_iter_eq<'a>(expected: &[&'_ [i64]], got: impl Iterator<Item = &'a [i64]>) {
similar_asserts::assert_eq!(expected, got.collect_vec());
}