1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
use std::sync::Arc;
use parking_lot::RwLock;
use re_data_store::LatestAtQuery;
use re_data_store::{DataStore, RangeQuery, TimeInt};
use re_log_types::{EntityPath, ResolvedTimeRange};
use re_types_core::ComponentName;
use re_types_core::SizeBytes;
use crate::{
CacheKey, Caches, Promise, RangeComponentResults, RangeComponentResultsInner, RangeResults,
};
// ---
impl Caches {
/// Queries for the given `component_names` using range semantics.
///
/// See [`RangeResults`] for more information about how to handle the results.
///
/// This is a cached API -- data will be lazily cached upon access.
pub fn range(
&self,
store: &DataStore,
query: &RangeQuery,
entity_path: &EntityPath,
component_names: impl IntoIterator<Item = ComponentName>,
) -> RangeResults {
re_tracing::profile_function!(entity_path.to_string());
let mut results = RangeResults::new(query.clone());
for component_name in component_names {
let key = CacheKey::new(entity_path.clone(), query.timeline(), component_name);
let cache = if crate::cacheable(component_name) {
Arc::clone(
self.range_per_cache_key
.write()
.entry(key.clone())
.or_insert_with(|| Arc::new(RwLock::new(RangeCache::new(key.clone())))),
)
} else {
// If the component shouldn't be cached, simply instantiate a new cache for it.
// It will be dropped when the user is done with it.
Arc::new(RwLock::new(RangeCache::new(key.clone())))
};
let mut cache = cache.write();
// TODO(#4810): Get rid of this once we have proper bucketing in place.
//
// Detects the case where the user loads a piece of data at the end of the time range, then a piece
// at the beginning of the range, and finally a piece right in the middle.
//
// DATA = ###################################################
// | | | | \_____/
// \______/ | | query #1
// query #2 \_______/
// query #3
//
// and coarsly invalidates the whole cache in that case, to avoid the kind of bugs
// showcased in <https://github.com/rerun-io/rerun/issues/5686>.
{
let time_range = cache.per_data_time.read_recursive().pending_time_range();
if let Some(time_range) = time_range {
{
let hole_start = time_range.max();
let hole_end =
TimeInt::new_temporal(query.range().min().as_i64().saturating_sub(1));
if hole_start < hole_end {
if let Some((data_time, _, _)) = store.latest_at(
&LatestAtQuery::new(query.timeline(), hole_end),
entity_path,
component_name,
&[component_name],
) {
if data_time > hole_start {
re_log::trace!(%entity_path, %component_name, "coarsely invalidated because of bridged queries");
cache.pending_invalidation = Some(TimeInt::MIN);
}
}
}
}
{
let hole_start = query.range().max();
let hole_end =
TimeInt::new_temporal(time_range.min().as_i64().saturating_sub(1));
if hole_start < hole_end {
if let Some((data_time, _, _)) = store.latest_at(
&LatestAtQuery::new(query.timeline(), hole_end),
entity_path,
component_name,
&[component_name],
) {
if data_time > hole_start {
re_log::trace!(%entity_path, %component_name, "coarsely invalidated because of bridged queries");
cache.pending_invalidation = Some(TimeInt::MIN);
}
}
}
}
}
}
cache.handle_pending_invalidation();
let cached = cache.range(store, query, entity_path, component_name);
results.add(component_name, cached);
}
results
}
}
// ---
/// Caches the results of `Range` queries for a given [`CacheKey`].
pub struct RangeCache {
/// For debugging purposes.
pub cache_key: CacheKey,
/// All temporal data, organized by _data_ time.
///
/// Query time is irrelevant for range queries.
pub per_data_time: RangeComponentResults,
/// Everything greater than or equal to this timestamp has been asynchronously invalidated.
///
/// The next time this cache gets queried, it must remove any entry matching this criteria.
/// `None` indicates that there's no pending invalidation.
///
/// Invalidation is deferred to query time because it is far more efficient that way: the frame
/// time effectively behaves as a natural micro-batching mechanism.
pub pending_invalidation: Option<TimeInt>,
}
impl RangeCache {
#[inline]
pub fn new(cache_key: CacheKey) -> Self {
Self {
cache_key,
per_data_time: RangeComponentResults::default(),
pending_invalidation: None,
}
}
}
impl std::fmt::Debug for RangeCache {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let Self {
cache_key,
per_data_time,
pending_invalidation: _,
} = self;
let mut strings = Vec::new();
let mut data_time_min = TimeInt::MAX;
let mut data_time_max = TimeInt::MIN;
{
let per_data_time = per_data_time.read();
let per_data_time_indices = &per_data_time.indices;
if let Some(time_front) = per_data_time_indices.front().map(|(t, _)| *t) {
data_time_min = TimeInt::min(data_time_min, time_front);
}
if let Some(time_back) = per_data_time_indices.back().map(|(t, _)| *t) {
data_time_max = TimeInt::max(data_time_max, time_back);
}
}
strings.push(format!(
"{} ({})",
cache_key
.timeline
.typ()
.format_range_utc(ResolvedTimeRange::new(data_time_min, data_time_max)),
re_format::format_bytes(per_data_time.total_size_bytes() as _),
));
if strings.is_empty() {
return f.write_str("<empty>");
}
f.write_str(&strings.join("\n").replace("\n\n", "\n"))
}
}
impl SizeBytes for RangeCache {
#[inline]
fn heap_size_bytes(&self) -> u64 {
let Self {
cache_key,
per_data_time,
pending_invalidation,
} = self;
cache_key.heap_size_bytes()
+ per_data_time.heap_size_bytes()
+ pending_invalidation.heap_size_bytes()
}
}
impl RangeCache {
/// Queries cached range data for a single component.
pub fn range(
&mut self,
store: &DataStore,
query: &RangeQuery,
entity_path: &EntityPath,
component_name: ComponentName,
) -> RangeComponentResults {
re_tracing::profile_scope!("range", format!("{query:?}"));
let RangeCache {
cache_key: _,
per_data_time,
pending_invalidation: _,
} = self;
let mut per_data_time = per_data_time.write();
let query_front = per_data_time.compute_front_query(query);
if let Some(query_front) = query_front.as_ref() {
re_tracing::profile_scope!("front");
for (data_time, row_id, mut cells) in
store.range(query_front, entity_path, [component_name])
{
// Soundness:
// * `cells[0]` is guaranteed to exist since we passed in `&[component_name]`
// * `cells[0]` is guaranteed to be non-null, otherwise this whole result would be null
let Some(cell) = cells[0].take() else {
debug_assert!(cells[0].is_some(), "unreachable: `cells[0]` is missing");
continue;
};
per_data_time
.promises_front
.push(((data_time, row_id), Promise::new(cell)));
}
{
re_tracing::profile_scope!("sort front");
per_data_time
.promises_front
.sort_by_key(|(index, _)| *index);
}
}
if let Some(query_back) = per_data_time.compute_back_query(query, query_front.as_ref()) {
re_tracing::profile_scope!("back");
for (data_time, row_id, mut cells) in store
.range(&query_back, entity_path, [component_name])
// If there's static data to be found, the front query will take care of it already.
.filter(|(data_time, _, _)| !data_time.is_static())
{
// Soundness:
// * `cells[0]` is guaranteed to exist since we passed in `&[component_name]`
// * `cells[0]` is guaranteed to be non-null, otherwise this whole result would be null
let Some(cell) = cells[0].take() else {
debug_assert!(cells[0].is_some(), "unreachable: `cells[0]` is missing");
continue;
};
per_data_time
.promises_back
.push(((data_time, row_id), Promise::new(cell)));
}
{
re_tracing::profile_scope!("sort back");
per_data_time.promises_back.sort_by_key(|(index, _)| *index);
}
}
per_data_time.sanity_check();
drop(per_data_time);
self.per_data_time.clone_at(query.range())
}
pub fn handle_pending_invalidation(&mut self) {
re_tracing::profile_function!();
let Self {
cache_key: _,
per_data_time,
pending_invalidation,
} = self;
let Some(pending_invalidation) = pending_invalidation.take() else {
return;
};
// Invalidating data is tricky. Our results object may have been cloned and shared already.
// We can't just invalidate the data in-place without guaranteeing the post-invalidation query
// will return the same results as the pending pre-invalidation queries.
let mut new_inner = (*per_data_time.read()).clone();
new_inner.truncate_at_time(pending_invalidation);
per_data_time.inner = Arc::new(RwLock::new(new_inner));
}
}
// ---
impl RangeComponentResultsInner {
/// How many _indices_ across this entire cache?
#[inline]
pub fn num_indices(&self) -> u64 {
self.indices.len() as _
}
/// How many _instances_ across this entire cache?
#[inline]
pub fn num_instances(&self) -> u64 {
self.cached_dense
.as_ref()
.map_or(0u64, |cached| cached.dyn_num_values() as _)
}
/// Given a `query`, returns N reduced queries that are sufficient to fill the missing data
/// on both the front & back sides of the cache.
#[inline]
pub fn compute_queries(&self, query: &RangeQuery) -> impl Iterator<Item = RangeQuery> {
let front = self.compute_front_query(query);
let back = self.compute_back_query(query, front.as_ref());
front.into_iter().chain(back)
}
/// Given a `query`, returns a reduced query that is sufficient to fill the missing data
/// on the front side of the cache, or `None` if all the necessary data is already
/// cached.
pub fn compute_front_query(&self, query: &RangeQuery) -> Option<RangeQuery> {
let mut reduced_query = query.clone();
// If the cache contains static data, then there's no point in querying anything else since
// static data overrides everything anyway.
if self
.indices
.front()
.map_or(false, |(data_time, _)| data_time.is_static())
{
return None;
}
// Otherwise, query for what's missing on the front-side of the cache, while making sure to
// take pending promises into account!
//
// Keep in mind: it is not possible for the cache to contain only part of a given
// timestamp. All entries for a given timestamp are loaded and invalidated atomically,
// whether it's promises or already resolved entries.
// We check the back promises too just because I'm feeling overly cautious.
// See `Concurrency edge-case` section below.
if let Some(time_range) = self.pending_time_range() {
let time_range_min = time_range.min().as_i64().saturating_sub(1);
reduced_query
.range
.set_max(i64::min(reduced_query.range.max().as_i64(), time_range_min));
} else {
// If nothing has been cached already, then we just want to query everything.
return Some(reduced_query);
}
if reduced_query.range.max() < reduced_query.range.min() {
return None;
}
Some(reduced_query)
}
/// Given a `query`, returns a reduced query that is sufficient to fill the missing data
/// on the back side of the cache, or `None` if all the necessary data is already
/// cached.
pub fn compute_back_query(
&self,
query: &RangeQuery,
query_front: Option<&RangeQuery>,
) -> Option<RangeQuery> {
let mut reduced_query = query.clone();
// If the cache contains static data, then there's no point in querying anything else since
// static data overrides everything anyway.
if self
.indices
.front()
.map_or(false, |(data_time, _)| data_time.is_static())
{
return None;
}
// Otherwise, query for what's missing on the back-side of the cache., while making sure to
// take pending promises into account!
//
// Keep in mind: it is not possible for the cache to contain only part of a given
// timestamp. All entries for a given timestamp are loaded and invalidated atomically,
// whether it's promises or already resolved entries.
if let Some(time_range) = self.pending_time_range() {
let time_range_max = time_range.max().as_i64().saturating_add(1);
reduced_query
.range
.set_min(i64::max(reduced_query.range.min().as_i64(), time_range_max));
} else {
// If nothing has been cached already, then the front query is already going to take care
// of everything.
return None;
}
// Back query should never overlap with the front query.
// Reminder: time ranges are all inclusive.
if let Some(query_front) = query_front {
let front_max_plus_one = query_front.range().max().as_i64().saturating_add(1);
let back_min = reduced_query.range().min().as_i64();
reduced_query
.range
.set_min(i64::max(back_min, front_max_plus_one));
}
if reduced_query.range.max() < reduced_query.range.min() {
return None;
}
Some(reduced_query)
}
}