1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
// DO NOT EDIT! This file was auto-generated by crates/re_types_builder/src/codegen/rust/api.rs
// Based on "crates/re_types/definitions/rerun/archetypes/segmentation_image.fbs".
#![allow(trivial_numeric_casts)]
#![allow(unused_imports)]
#![allow(unused_parens)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::cloned_instead_of_copied)]
#![allow(clippy::iter_on_single_items)]
#![allow(clippy::map_flatten)]
#![allow(clippy::match_wildcard_for_single_variants)]
#![allow(clippy::needless_question_mark)]
#![allow(clippy::new_without_default)]
#![allow(clippy::redundant_closure)]
#![allow(clippy::too_many_arguments)]
#![allow(clippy::too_many_lines)]
#![allow(clippy::unnecessary_cast)]
use ::re_types_core::external::arrow2;
use ::re_types_core::ComponentName;
use ::re_types_core::SerializationResult;
use ::re_types_core::{ComponentBatch, MaybeOwnedComponentBatch};
use ::re_types_core::{DeserializationError, DeserializationResult};
/// **Archetype**: An image made up of integer class-ids.
///
/// The shape of the `TensorData` must be mappable to an `HxW` tensor.
/// Each pixel corresponds to a class-id that will be mapped to a color based on annotation context.
///
/// In the case of floating point images, the label will be looked up based on rounding to the nearest
/// integer value.
///
/// Leading and trailing unit-dimensions are ignored, so that
/// `1x640x480x1` is treated as a `640x480` image.
///
/// See also [`AnnotationContext`][crate::archetypes::AnnotationContext] to associate each class with a color and a label.
///
/// ## Example
///
/// ### Simple segmentation image
/// ```ignore
/// use ndarray::{s, Array, ShapeBuilder};
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let rec = rerun::RecordingStreamBuilder::new("rerun_example_segmentation_image").spawn()?;
///
/// // create a segmentation image
/// let mut image = Array::<u8, _>::zeros((8, 12).f());
/// image.slice_mut(s![0..4, 0..6]).fill(1);
/// image.slice_mut(s![4..8, 6..12]).fill(2);
///
/// // create an annotation context to describe the classes
/// let annotation = rerun::AnnotationContext::new([
/// (1, "red", rerun::Rgba32::from_rgb(255, 0, 0)),
/// (2, "green", rerun::Rgba32::from_rgb(0, 255, 0)),
/// ]);
///
/// // log the annotation and the image
/// rec.log_static("/", &annotation)?;
///
/// rec.log("image", &rerun::SegmentationImage::try_from(image)?)?;
///
/// Ok(())
/// }
/// ```
/// <center>
/// <picture>
/// <source media="(max-width: 480px)" srcset="https://static.rerun.io/segmentation_image_simple/eb49e0b8cb870c75a69e2a47a2d202e5353115f6/480w.png">
/// <source media="(max-width: 768px)" srcset="https://static.rerun.io/segmentation_image_simple/eb49e0b8cb870c75a69e2a47a2d202e5353115f6/768w.png">
/// <source media="(max-width: 1024px)" srcset="https://static.rerun.io/segmentation_image_simple/eb49e0b8cb870c75a69e2a47a2d202e5353115f6/1024w.png">
/// <source media="(max-width: 1200px)" srcset="https://static.rerun.io/segmentation_image_simple/eb49e0b8cb870c75a69e2a47a2d202e5353115f6/1200w.png">
/// <img src="https://static.rerun.io/segmentation_image_simple/eb49e0b8cb870c75a69e2a47a2d202e5353115f6/full.png" width="640">
/// </picture>
/// </center>
#[derive(Clone, Debug, PartialEq)]
pub struct SegmentationImage {
/// The image data. Should always be a rank-2 tensor.
pub data: crate::components::TensorData,
/// An optional floating point value that specifies the 2D drawing order.
///
/// Objects with higher values are drawn on top of those with lower values.
pub draw_order: Option<crate::components::DrawOrder>,
}
impl ::re_types_core::SizeBytes for SegmentationImage {
#[inline]
fn heap_size_bytes(&self) -> u64 {
self.data.heap_size_bytes() + self.draw_order.heap_size_bytes()
}
#[inline]
fn is_pod() -> bool {
<crate::components::TensorData>::is_pod()
&& <Option<crate::components::DrawOrder>>::is_pod()
}
}
static REQUIRED_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 1usize]> =
once_cell::sync::Lazy::new(|| ["rerun.components.TensorData".into()]);
static RECOMMENDED_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 1usize]> =
once_cell::sync::Lazy::new(|| ["rerun.components.SegmentationImageIndicator".into()]);
static OPTIONAL_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 1usize]> =
once_cell::sync::Lazy::new(|| ["rerun.components.DrawOrder".into()]);
static ALL_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 3usize]> =
once_cell::sync::Lazy::new(|| {
[
"rerun.components.TensorData".into(),
"rerun.components.SegmentationImageIndicator".into(),
"rerun.components.DrawOrder".into(),
]
});
impl SegmentationImage {
/// The total number of components in the archetype: 1 required, 1 recommended, 1 optional
pub const NUM_COMPONENTS: usize = 3usize;
}
/// Indicator component for the [`SegmentationImage`] [`::re_types_core::Archetype`]
pub type SegmentationImageIndicator = ::re_types_core::GenericIndicatorComponent<SegmentationImage>;
impl ::re_types_core::Archetype for SegmentationImage {
type Indicator = SegmentationImageIndicator;
#[inline]
fn name() -> ::re_types_core::ArchetypeName {
"rerun.archetypes.SegmentationImage".into()
}
#[inline]
fn indicator() -> MaybeOwnedComponentBatch<'static> {
static INDICATOR: SegmentationImageIndicator = SegmentationImageIndicator::DEFAULT;
MaybeOwnedComponentBatch::Ref(&INDICATOR)
}
#[inline]
fn required_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
REQUIRED_COMPONENTS.as_slice().into()
}
#[inline]
fn recommended_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
RECOMMENDED_COMPONENTS.as_slice().into()
}
#[inline]
fn optional_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
OPTIONAL_COMPONENTS.as_slice().into()
}
#[inline]
fn all_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
ALL_COMPONENTS.as_slice().into()
}
#[inline]
fn from_arrow_components(
arrow_data: impl IntoIterator<Item = (ComponentName, Box<dyn arrow2::array::Array>)>,
) -> DeserializationResult<Self> {
re_tracing::profile_function!();
use ::re_types_core::{Loggable as _, ResultExt as _};
let arrays_by_name: ::std::collections::HashMap<_, _> = arrow_data
.into_iter()
.map(|(name, array)| (name.full_name(), array))
.collect();
let data = {
let array = arrays_by_name
.get("rerun.components.TensorData")
.ok_or_else(DeserializationError::missing_data)
.with_context("rerun.archetypes.SegmentationImage#data")?;
<crate::components::TensorData>::from_arrow_opt(&**array)
.with_context("rerun.archetypes.SegmentationImage#data")?
.into_iter()
.next()
.flatten()
.ok_or_else(DeserializationError::missing_data)
.with_context("rerun.archetypes.SegmentationImage#data")?
};
let draw_order = if let Some(array) = arrays_by_name.get("rerun.components.DrawOrder") {
<crate::components::DrawOrder>::from_arrow_opt(&**array)
.with_context("rerun.archetypes.SegmentationImage#draw_order")?
.into_iter()
.next()
.flatten()
} else {
None
};
Ok(Self { data, draw_order })
}
}
impl ::re_types_core::AsComponents for SegmentationImage {
fn as_component_batches(&self) -> Vec<MaybeOwnedComponentBatch<'_>> {
re_tracing::profile_function!();
use ::re_types_core::Archetype as _;
[
Some(Self::indicator()),
Some((&self.data as &dyn ComponentBatch).into()),
self.draw_order
.as_ref()
.map(|comp| (comp as &dyn ComponentBatch).into()),
]
.into_iter()
.flatten()
.collect()
}
}
impl SegmentationImage {
/// Create a new `SegmentationImage`.
#[inline]
pub fn new(data: impl Into<crate::components::TensorData>) -> Self {
Self {
data: data.into(),
draw_order: None,
}
}
/// An optional floating point value that specifies the 2D drawing order.
///
/// Objects with higher values are drawn on top of those with lower values.
#[inline]
pub fn with_draw_order(mut self, draw_order: impl Into<crate::components::DrawOrder>) -> Self {
self.draw_order = Some(draw_order.into());
self
}
}