1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// DO NOT EDIT! This file was auto-generated by crates/re_types_builder/src/codegen/rust/api.rs
// Based on "crates/re_types/definitions/rerun/archetypes/tensor.fbs".

#![allow(trivial_numeric_casts)]
#![allow(unused_imports)]
#![allow(unused_parens)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::cloned_instead_of_copied)]
#![allow(clippy::iter_on_single_items)]
#![allow(clippy::map_flatten)]
#![allow(clippy::match_wildcard_for_single_variants)]
#![allow(clippy::needless_question_mark)]
#![allow(clippy::new_without_default)]
#![allow(clippy::redundant_closure)]
#![allow(clippy::too_many_arguments)]
#![allow(clippy::too_many_lines)]
#![allow(clippy::unnecessary_cast)]

use ::re_types_core::external::arrow2;
use ::re_types_core::ComponentName;
use ::re_types_core::SerializationResult;
use ::re_types_core::{ComponentBatch, MaybeOwnedComponentBatch};
use ::re_types_core::{DeserializationError, DeserializationResult};

/// **Archetype**: A generic n-dimensional Tensor.
///
/// ## Example
///
/// ### Simple tensor
/// ```ignore
/// use ndarray::{Array, ShapeBuilder};
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
///     let rec = rerun::RecordingStreamBuilder::new("rerun_example_tensor").spawn()?;
///
///     let mut data = Array::<u8, _>::default((8, 6, 3, 5).f());
///     data.map_inplace(|x| *x = rand::random());
///
///     let tensor =
///         rerun::Tensor::try_from(data)?.with_dim_names(["width", "height", "channel", "batch"]);
///     rec.log("tensor", &tensor)?;
///
///     Ok(())
/// }
/// ```
/// <center>
/// <picture>
///   <source media="(max-width: 480px)" srcset="https://static.rerun.io/tensor_simple/baacb07712f7b706e3c80e696f70616c6c20b367/480w.png">
///   <source media="(max-width: 768px)" srcset="https://static.rerun.io/tensor_simple/baacb07712f7b706e3c80e696f70616c6c20b367/768w.png">
///   <source media="(max-width: 1024px)" srcset="https://static.rerun.io/tensor_simple/baacb07712f7b706e3c80e696f70616c6c20b367/1024w.png">
///   <source media="(max-width: 1200px)" srcset="https://static.rerun.io/tensor_simple/baacb07712f7b706e3c80e696f70616c6c20b367/1200w.png">
///   <img src="https://static.rerun.io/tensor_simple/baacb07712f7b706e3c80e696f70616c6c20b367/full.png" width="640">
/// </picture>
/// </center>
#[derive(Clone, Debug, PartialEq)]
pub struct Tensor {
    /// The tensor data
    pub data: crate::components::TensorData,
}

impl ::re_types_core::SizeBytes for Tensor {
    #[inline]
    fn heap_size_bytes(&self) -> u64 {
        self.data.heap_size_bytes()
    }

    #[inline]
    fn is_pod() -> bool {
        <crate::components::TensorData>::is_pod()
    }
}

static REQUIRED_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 1usize]> =
    once_cell::sync::Lazy::new(|| ["rerun.components.TensorData".into()]);

static RECOMMENDED_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 1usize]> =
    once_cell::sync::Lazy::new(|| ["rerun.components.TensorIndicator".into()]);

static OPTIONAL_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 0usize]> =
    once_cell::sync::Lazy::new(|| []);

static ALL_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 2usize]> =
    once_cell::sync::Lazy::new(|| {
        [
            "rerun.components.TensorData".into(),
            "rerun.components.TensorIndicator".into(),
        ]
    });

impl Tensor {
    /// The total number of components in the archetype: 1 required, 1 recommended, 0 optional
    pub const NUM_COMPONENTS: usize = 2usize;
}

/// Indicator component for the [`Tensor`] [`::re_types_core::Archetype`]
pub type TensorIndicator = ::re_types_core::GenericIndicatorComponent<Tensor>;

impl ::re_types_core::Archetype for Tensor {
    type Indicator = TensorIndicator;

    #[inline]
    fn name() -> ::re_types_core::ArchetypeName {
        "rerun.archetypes.Tensor".into()
    }

    #[inline]
    fn indicator() -> MaybeOwnedComponentBatch<'static> {
        static INDICATOR: TensorIndicator = TensorIndicator::DEFAULT;
        MaybeOwnedComponentBatch::Ref(&INDICATOR)
    }

    #[inline]
    fn required_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
        REQUIRED_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn recommended_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
        RECOMMENDED_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn optional_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
        OPTIONAL_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn all_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
        ALL_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn from_arrow_components(
        arrow_data: impl IntoIterator<Item = (ComponentName, Box<dyn arrow2::array::Array>)>,
    ) -> DeserializationResult<Self> {
        re_tracing::profile_function!();
        use ::re_types_core::{Loggable as _, ResultExt as _};
        let arrays_by_name: ::std::collections::HashMap<_, _> = arrow_data
            .into_iter()
            .map(|(name, array)| (name.full_name(), array))
            .collect();
        let data = {
            let array = arrays_by_name
                .get("rerun.components.TensorData")
                .ok_or_else(DeserializationError::missing_data)
                .with_context("rerun.archetypes.Tensor#data")?;
            <crate::components::TensorData>::from_arrow_opt(&**array)
                .with_context("rerun.archetypes.Tensor#data")?
                .into_iter()
                .next()
                .flatten()
                .ok_or_else(DeserializationError::missing_data)
                .with_context("rerun.archetypes.Tensor#data")?
        };
        Ok(Self { data })
    }
}

impl ::re_types_core::AsComponents for Tensor {
    fn as_component_batches(&self) -> Vec<MaybeOwnedComponentBatch<'_>> {
        re_tracing::profile_function!();
        use ::re_types_core::Archetype as _;
        [
            Some(Self::indicator()),
            Some((&self.data as &dyn ComponentBatch).into()),
        ]
        .into_iter()
        .flatten()
        .collect()
    }
}

impl Tensor {
    /// Create a new `Tensor`.
    #[inline]
    pub fn new(data: impl Into<crate::components::TensorData>) -> Self {
        Self { data: data.into() }
    }
}