1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
//! This module is for the `m256` wrapper type, its bonus methods, and all
//! necessary trait impls.
//!
//! Intrinsics should _not_ be in this module! They should all be free-functions
//! in the other modules, sorted by CPU target feature.
use super::*;
/// The data for a 256-bit AVX register of eight `f32` lanes.
///
/// * This is _very similar to_ having `[f32; 8]`. The main difference is that
/// it's aligned to 32 instead of just 4, and of course you can perform
/// various intrinsic operations on it.
#[repr(transparent)]
#[allow(non_camel_case_types)]
pub struct m256(pub __m256);
#[cfg(feature = "bytemuck")]
unsafe impl bytemuck::Zeroable for m256 {}
#[cfg(feature = "bytemuck")]
unsafe impl bytemuck::Pod for m256 {}
#[cfg(feature = "bytemuck")]
unsafe impl bytemuck::TransparentWrapper<__m256> for m256 {}
impl m256 {
/// Transmutes the `m256` to an array.
///
/// Same as `m.into()`, just lets you be more explicit about what's happening.
#[must_use]
#[inline(always)]
pub fn to_array(self) -> [f32; 8] {
self.into()
}
/// Transmutes an array into `m256`.
///
/// Same as `m256::from(arr)`, it just lets you be more explicit about what's
/// happening.
#[must_use]
#[inline(always)]
pub fn from_array(f: [f32; 8]) -> Self {
f.into()
}
/// Converts into the bit patterns of these floats (`[u32;8]`).
///
/// Like [`f32::to_bits`](f32::to_bits), but all eight lanes at once.
#[must_use]
#[inline(always)]
pub fn to_bits(self) -> [u32; 8] {
unsafe { core::mem::transmute(self) }
}
/// Converts from the bit patterns of these floats (`[u32;8]`).
///
/// Like [`f32::from_bits`](f32::from_bits), but all eight lanes at once.
#[must_use]
#[inline(always)]
pub fn from_bits(bits: [u32; 8]) -> Self {
unsafe { core::mem::transmute(bits) }
}
}
impl Clone for m256 {
#[must_use]
#[inline(always)]
fn clone(&self) -> Self {
*self
}
}
impl Copy for m256 {}
impl Default for m256 {
#[must_use]
#[inline(always)]
fn default() -> Self {
unsafe { core::mem::zeroed() }
}
}
impl From<[f32; 8]> for m256 {
#[must_use]
#[inline(always)]
fn from(arr: [f32; 8]) -> Self {
// Safety: because this semantically moves the value from the input position
// (align4) to the output position (align16) it is fine to increase our
// required alignment without worry.
unsafe { core::mem::transmute(arr) }
}
}
impl From<m256> for [f32; 8] {
#[must_use]
#[inline(always)]
fn from(m: m256) -> Self {
// We can of course transmute to a lower alignment
unsafe { core::mem::transmute(m) }
}
}
//
// PLEASE KEEP ALL THE FORMAT IMPL JUNK AT THE END OF THE FILE
//
impl Debug for m256 {
/// Debug formats each float.
/// ```
/// # use safe_arch::*;
/// let f = format!("{:?}", m256::default());
/// assert_eq!(&f, "m256(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)");
/// ```
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "m256(")?;
for (i, float) in self.to_array().iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
Debug::fmt(float, f)?;
}
write!(f, ")")
}
}
impl Display for m256 {
/// Display formats each float, and leaves the type name off of the font.
/// ```
/// # use safe_arch::*;
/// let f = format!("{}", m256::default());
/// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
/// ```
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "(")?;
for (i, float) in self.to_array().iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
Display::fmt(float, f)?;
}
write!(f, ")")
}
}
impl Binary for m256 {
/// Binary formats each float's bit pattern (via [`f32::to_bits`]).
/// ```
/// # use safe_arch::*;
/// let f = format!("{:b}", m256::default());
/// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
/// ```
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "(")?;
for (i, float) in self.to_array().iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
Binary::fmt(&float.to_bits(), f)?;
}
write!(f, ")")
}
}
impl LowerExp for m256 {
/// LowerExp formats each float.
/// ```
/// # use safe_arch::*;
/// let f = format!("{:e}", m256::default());
/// assert_eq!(&f, "(0e0, 0e0, 0e0, 0e0, 0e0, 0e0, 0e0, 0e0)");
/// ```
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "(")?;
for (i, float) in self.to_array().iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
LowerExp::fmt(float, f)?;
}
write!(f, ")")
}
}
impl UpperExp for m256 {
/// UpperExp formats each float.
/// ```
/// # use safe_arch::*;
/// let f = format!("{:E}", m256::default());
/// assert_eq!(&f, "(0E0, 0E0, 0E0, 0E0, 0E0, 0E0, 0E0, 0E0)");
/// ```
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "(")?;
for (i, float) in self.to_array().iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
UpperExp::fmt(float, f)?;
}
write!(f, ")")
}
}
impl LowerHex for m256 {
/// LowerHex formats each float's bit pattern (via [`f32::to_bits`]).
/// ```
/// # use safe_arch::*;
/// let f = format!("{:x}", m256::default());
/// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
/// ```
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "(")?;
for (i, float) in self.to_array().iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
LowerHex::fmt(&float.to_bits(), f)?;
}
write!(f, ")")
}
}
impl UpperHex for m256 {
/// UpperHex formats each float's bit pattern (via [`f32::to_bits`]).
/// ```
/// # use safe_arch::*;
/// let f = format!("{:X}", m256::default());
/// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
/// ```
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "(")?;
for (i, float) in self.to_array().iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
UpperHex::fmt(&float.to_bits(), f)?;
}
write!(f, ")")
}
}
impl Octal for m256 {
/// Octal formats each float's bit pattern (via [`f32::to_bits`]).
/// ```
/// # use safe_arch::*;
/// let f = format!("{:o}", m256::default());
/// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
/// ```
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "(")?;
for (i, float) in self.to_array().iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
Octal::fmt(&float.to_bits(), f)?;
}
write!(f, ")")
}
}