1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//! This module is for the `m256` wrapper type, its bonus methods, and all
//! necessary trait impls.
//!
//! Intrinsics should _not_ be in this module! They should all be free-functions
//! in the other modules, sorted by CPU target feature.

use super::*;

/// The data for a 256-bit AVX register of eight `f32` lanes.
///
/// * This is _very similar to_ having `[f32; 8]`. The main difference is that
///   it's aligned to 32 instead of just 4, and of course you can perform
///   various intrinsic operations on it.
#[repr(transparent)]
#[allow(non_camel_case_types)]
pub struct m256(pub __m256);

#[cfg(feature = "bytemuck")]
unsafe impl bytemuck::Zeroable for m256 {}
#[cfg(feature = "bytemuck")]
unsafe impl bytemuck::Pod for m256 {}
#[cfg(feature = "bytemuck")]
unsafe impl bytemuck::TransparentWrapper<__m256> for m256 {}

impl m256 {
  /// Transmutes the `m256` to an array.
  ///
  /// Same as `m.into()`, just lets you be more explicit about what's happening.
  #[must_use]
  #[inline(always)]
  pub fn to_array(self) -> [f32; 8] {
    self.into()
  }

  /// Transmutes an array into `m256`.
  ///
  /// Same as `m256::from(arr)`, it just lets you be more explicit about what's
  /// happening.
  #[must_use]
  #[inline(always)]
  pub fn from_array(f: [f32; 8]) -> Self {
    f.into()
  }

  /// Converts into the bit patterns of these floats (`[u32;8]`).
  ///
  /// Like [`f32::to_bits`](f32::to_bits), but all eight lanes at once.
  #[must_use]
  #[inline(always)]
  pub fn to_bits(self) -> [u32; 8] {
    unsafe { core::mem::transmute(self) }
  }

  /// Converts from the bit patterns of these floats (`[u32;8]`).
  ///
  /// Like [`f32::from_bits`](f32::from_bits), but all eight lanes at once.
  #[must_use]
  #[inline(always)]
  pub fn from_bits(bits: [u32; 8]) -> Self {
    unsafe { core::mem::transmute(bits) }
  }
}

impl Clone for m256 {
  #[must_use]
  #[inline(always)]
  fn clone(&self) -> Self {
    *self
  }
}
impl Copy for m256 {}

impl Default for m256 {
  #[must_use]
  #[inline(always)]
  fn default() -> Self {
    unsafe { core::mem::zeroed() }
  }
}

impl From<[f32; 8]> for m256 {
  #[must_use]
  #[inline(always)]
  fn from(arr: [f32; 8]) -> Self {
    // Safety: because this semantically moves the value from the input position
    // (align4) to the output position (align16) it is fine to increase our
    // required alignment without worry.
    unsafe { core::mem::transmute(arr) }
  }
}

impl From<m256> for [f32; 8] {
  #[must_use]
  #[inline(always)]
  fn from(m: m256) -> Self {
    // We can of course transmute to a lower alignment
    unsafe { core::mem::transmute(m) }
  }
}

//
// PLEASE KEEP ALL THE FORMAT IMPL JUNK AT THE END OF THE FILE
//

impl Debug for m256 {
  /// Debug formats each float.
  /// ```
  /// # use safe_arch::*;
  /// let f = format!("{:?}", m256::default());
  /// assert_eq!(&f, "m256(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)");
  /// ```
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    write!(f, "m256(")?;
    for (i, float) in self.to_array().iter().enumerate() {
      if i != 0 {
        write!(f, ", ")?;
      }
      Debug::fmt(float, f)?;
    }
    write!(f, ")")
  }
}

impl Display for m256 {
  /// Display formats each float, and leaves the type name off of the font.
  /// ```
  /// # use safe_arch::*;
  /// let f = format!("{}", m256::default());
  /// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
  /// ```
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    write!(f, "(")?;
    for (i, float) in self.to_array().iter().enumerate() {
      if i != 0 {
        write!(f, ", ")?;
      }
      Display::fmt(float, f)?;
    }
    write!(f, ")")
  }
}

impl Binary for m256 {
  /// Binary formats each float's bit pattern (via [`f32::to_bits`]).
  /// ```
  /// # use safe_arch::*;
  /// let f = format!("{:b}", m256::default());
  /// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
  /// ```
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    write!(f, "(")?;
    for (i, float) in self.to_array().iter().enumerate() {
      if i != 0 {
        write!(f, ", ")?;
      }
      Binary::fmt(&float.to_bits(), f)?;
    }
    write!(f, ")")
  }
}

impl LowerExp for m256 {
  /// LowerExp formats each float.
  /// ```
  /// # use safe_arch::*;
  /// let f = format!("{:e}", m256::default());
  /// assert_eq!(&f, "(0e0, 0e0, 0e0, 0e0, 0e0, 0e0, 0e0, 0e0)");
  /// ```
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    write!(f, "(")?;
    for (i, float) in self.to_array().iter().enumerate() {
      if i != 0 {
        write!(f, ", ")?;
      }
      LowerExp::fmt(float, f)?;
    }
    write!(f, ")")
  }
}

impl UpperExp for m256 {
  /// UpperExp formats each float.
  /// ```
  /// # use safe_arch::*;
  /// let f = format!("{:E}", m256::default());
  /// assert_eq!(&f, "(0E0, 0E0, 0E0, 0E0, 0E0, 0E0, 0E0, 0E0)");
  /// ```
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    write!(f, "(")?;
    for (i, float) in self.to_array().iter().enumerate() {
      if i != 0 {
        write!(f, ", ")?;
      }
      UpperExp::fmt(float, f)?;
    }
    write!(f, ")")
  }
}

impl LowerHex for m256 {
  /// LowerHex formats each float's bit pattern (via [`f32::to_bits`]).
  /// ```
  /// # use safe_arch::*;
  /// let f = format!("{:x}", m256::default());
  /// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
  /// ```
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    write!(f, "(")?;
    for (i, float) in self.to_array().iter().enumerate() {
      if i != 0 {
        write!(f, ", ")?;
      }
      LowerHex::fmt(&float.to_bits(), f)?;
    }
    write!(f, ")")
  }
}

impl UpperHex for m256 {
  /// UpperHex formats each float's bit pattern (via [`f32::to_bits`]).
  /// ```
  /// # use safe_arch::*;
  /// let f = format!("{:X}", m256::default());
  /// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
  /// ```
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    write!(f, "(")?;
    for (i, float) in self.to_array().iter().enumerate() {
      if i != 0 {
        write!(f, ", ")?;
      }
      UpperHex::fmt(&float.to_bits(), f)?;
    }
    write!(f, ")")
  }
}

impl Octal for m256 {
  /// Octal formats each float's bit pattern (via [`f32::to_bits`]).
  /// ```
  /// # use safe_arch::*;
  /// let f = format!("{:o}", m256::default());
  /// assert_eq!(&f, "(0, 0, 0, 0, 0, 0, 0, 0)");
  /// ```
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    write!(f, "(")?;
    for (i, float) in self.to_array().iter().enumerate() {
      if i != 0 {
        write!(f, ", ")?;
      }
      Octal::fmt(&float.to_bits(), f)?;
    }
    write!(f, ")")
  }
}