1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
use crate::{HasPosition, InsertionError, Point2, Triangulation, TriangulationExt};
use core::cmp::{Ordering, Reverse};
use super::{
dcel_operations, FixedDirectedEdgeHandle, FixedUndirectedEdgeHandle, FixedVertexHandle,
};
use alloc::vec::Vec;
/// An `f64` wrapper implementing `Ord` and `Eq`.
///
/// This is only used as part of bulk loading.
/// All input coordinates are checked with `validate_coordinate` before they are used, hence
/// `Ord` and `Eq` should always be well defined.
#[derive(Debug, PartialEq, PartialOrd, Clone, Copy)]
struct FloatOrd(f64);
#[allow(clippy::derive_ord_xor_partial_ord)]
impl Ord for FloatOrd {
fn cmp(&self, other: &Self) -> Ordering {
self.partial_cmp(other).unwrap()
}
}
impl Eq for FloatOrd {}
/// Implements a circle-sweep bulk loading algorithm for efficient initialization of Delaunay
/// triangulations.
///
/// The algorithm is motivated by:
///
/// A faster circle-sweep Delaunay triangulation algorithm
/// Ahmad Biniaz, Gholamhossein Dastghaibyfard
/// Advances in Engineering Software,
/// Volume 43, Issue 1,
/// 2012,
/// <https://doi.org/10.1016/j.advengsoft.2011.09.003>
///
/// Or alternatively: <http://cglab.ca/~biniaz/papers/Sweep%20Circle.pdf>
///
/// # Overview
///
/// The major reason for the algorithm's good performance lies in an efficient lookup structure
/// for finding *hull edges* at a certain *angle*.
/// "angle" always refers to the angle of a vertex to a center point which is calculated first.
/// The lookup structure is implemented by the `Hull` struct. It has a `get` and `insert` method
/// which can quickly find and update the edges of the hull at a given angle.
///
/// The algorithm is roughly compromised of these steps:
///
/// 1. Calculate the median position of all vertices. We call this position `initial_center`.
/// 2. Sort all vertices along their distance to this center.
/// 3. Build a seed triangulation by inserting vertices (beginning with the closest vertex) into an
/// empty triangulation. Stop once the triangulation has at least one inner face.
/// 4. Calculate the final center. The final center is some point inside the seed triangulation (e.g.
/// the average its vertices)
/// 5. Initiate the `Hull` lookup structure with the seed triangulation.
/// 6. Insert all remaining vertices, beginning with the vertex closest to `initial_center`.
/// This can be done efficiently as the edge "closest" to the new vertex can be identified quickly
/// with `Hull.get`. After each insertion, the hull is partially patched to be more convex
/// 7. After all vertices have been inserted: The hull is not necessarily convex. Fill any "hole"
/// in the hull by a process comparable to the graham scan algorithm.
///
/// # Some details
///
/// "angle" does not refer to an actual angle in radians but rather to an approximation that doesn't
/// require trigonometry for calculation. See method `pseudo_angle` for more information.
///
/// In rare cases, step 6 is not able to insert a vertex properly. It will be skipped and inserted
/// regularly at the end (slow path). This may happen especially for very skewed triangulations
/// and might be a good point for investigation if some point sets takes surprisingly long to load.
pub fn bulk_load<V, T>(mut elements: Vec<V>) -> Result<T, InsertionError>
where
V: HasPosition,
T: Triangulation<Vertex = V>,
{
if elements.is_empty() {
return Ok(T::new());
}
let mut point_sum = Point2::<f64>::new(0.0, 0.0);
for element in &elements {
crate::validate_vertex(element)?;
let position = element.position();
point_sum = point_sum.add(position.to_f64());
}
// Set the initial center to the average of all positions. This should be a good choice for most triangulations.
//
// The research paper uses a different approach by taking the center of the points' bounding box.
// However, this position might be far off the center off mass if the triangulation has just a few outliers.
// This could lead to a very uneven angle distribution as nearly all points are might be in a very small angle segment
// around the center. This degrades the hull-structure's lookup and insertion performance.
// For this reason, taking the average appears to be a safer option as most vertices should be distributed around the
// initial center.
let initial_center = point_sum.mul(1.0 / (elements.len() as f64));
let mut result = T::with_capacity(elements.len(), elements.len() * 3, elements.len() * 2);
// Sort by distance, smallest values last. This allows to pop values depending on their distance.
elements.sort_unstable_by_key(|e| {
Reverse(FloatOrd(initial_center.distance_2(e.position().to_f64())))
});
while let Some(next) = elements.pop() {
result.insert(next)?;
if !result.all_vertices_on_line() && result.num_vertices() >= 4 {
// We'll need 4 vertices to calculate a center position with good precision.
// Otherwise, dividing by 3.0 can introduce precision loss and errors.
break;
}
}
if elements.is_empty() {
return Ok(result);
}
// Get new center that is guaranteed to be within the convex hull
let center_positions = || {
result
.vertices()
.rev()
.take(4)
.map(|v| v.position().to_f64())
};
let sum_x = center_positions().map(|p| p.x).sum();
let sum_y = center_positions().map(|p| p.y).sum();
// Note that we don't re-sort the elements according to their distance to the newest center. This doesn't seem to
// be required for the algorithms performance, probably due to the `center` being close to `initial_center`.
// As of now, it's a unclear how to construct point sets that result in a `center` being farther off
// `initial center` and what the impact of this would be.
let center = Point2::new(sum_x, sum_y).mul(0.25);
let mut hull = loop {
if let Some(hull) = Hull::from_triangulation(&result, center) {
break hull;
}
// The hull cannot be constructed in some rare cases for very degenerate
// triangulations. Just insert another vertex and try again. Usually hull generation should succeed eventually.
if let Some(next) = elements.pop() {
result.insert(next).unwrap();
} else {
return Ok(result);
}
};
let mut buffer = Vec::new();
let mut skipped_elements = Vec::new();
while let Some(next) = elements.pop() {
skipped_elements.extend(
single_bulk_insertion_step(&mut result, center, &mut hull, next, &mut buffer).err(),
);
}
if cfg!(any(fuzzing, test)) {
hull_sanity_check(&result, &hull);
}
fix_convexity(&mut result);
for element in skipped_elements {
result.insert(element)?;
}
Ok(result)
}
pub struct PointWithIndex<V> {
data: V,
index: usize,
}
impl<V> HasPosition for PointWithIndex<V>
where
V: HasPosition,
{
type Scalar = V::Scalar;
fn position(&self) -> Point2<V::Scalar> {
self.data.position()
}
}
pub fn bulk_load_stable<V, T, T2>(elements: Vec<V>) -> Result<T, InsertionError>
where
V: HasPosition,
T: Triangulation<Vertex = V>,
T2: Triangulation<
Vertex = PointWithIndex<V>,
DirectedEdge = T::DirectedEdge,
UndirectedEdge = T::UndirectedEdge,
Face = T::Face,
HintGenerator = T::HintGenerator,
>,
{
let elements = elements
.into_iter()
.enumerate()
.map(|(index, data)| PointWithIndex { index, data })
.collect::<Vec<_>>();
let num_original_elements = elements.len();
let mut with_indices = bulk_load::<PointWithIndex<V>, T2>(elements)?;
if with_indices.num_vertices() != num_original_elements {
// Handling duplicates is more complicated - we cannot simply swap the elements into
// their target position indices as these indices may contain gaps. The following code
// fills those gaps.
//
// Running example: The original indices in with_indices could look like
//
// [3, 0, 1, 4, 6]
//
// which indicates that the original elements at indices 2 and 5 were duplicates.
let mut no_gap = (0usize..with_indices.num_vertices()).collect::<Vec<_>>();
// This will be sorted by their original index:
// no_gap (before sorting): [0, 1, 2, 3, 4]
// keys for sorting : [3, 0, 1, 4, 6]
// no_gap (after sorting) : [1, 2, 0, 3, 4]
// sorted keys : [0, 1, 3, 4, 6]
no_gap.sort_unstable_by_key(|elem| {
with_indices
.vertex(FixedVertexHandle::new(*elem))
.data()
.index
});
// Now, the sequential target index for FixedVertexHandle(no_gap[i]) is i
//
// Example:
// Vertex index in with_indices: [0, 1, 2, 3, 4]
// Original target indices : [3, 0, 1, 4, 6]
// Sequential target index : [2, 0, 1, 3, 4]
for (sequential_index, vertex) in no_gap.into_iter().enumerate() {
with_indices
.vertex_data_mut(FixedVertexHandle::new(vertex))
.index = sequential_index;
}
}
// Swap elements until the target order is restored.
// The attached indices for each vertex are guaranteed to form a permutation over all index
// since gaps are eliminated in the step above.
let mut current_index = 0;
loop {
// Example: The permutation [0 -> 2, 1 -> 0, 2 -> 1, 3 -> 3, 4 -> 4]
// (written as [2, 0, 1, 3, 4]) will lead to the following swaps:
// Swap 2, 0 (leading to [1, 0, 2, 3, 4])
// Swap 1, 0 (leading to [0, 1, 2, 3, 4])
// Done
let new_index = FixedVertexHandle::new(current_index);
let old_index = with_indices.vertex(new_index).data().index;
if current_index == old_index {
current_index += 1;
} else {
with_indices
.s_mut()
.swap_vertices(FixedVertexHandle::new(old_index), new_index);
}
if current_index >= with_indices.num_vertices() {
break;
}
}
let (dcel, hint_generator) = with_indices.into_parts();
let dcel = dcel.map_vertices(|point_with_index| point_with_index.data);
Ok(T::from_parts(dcel, hint_generator, 0))
}
#[inline(never)] // Prevent inlining for better profiling data
fn single_bulk_insertion_step<TR, T>(
result: &mut TR,
center: Point2<f64>,
hull: &mut Hull,
element: T,
buffer_for_edge_legalization: &mut Vec<FixedUndirectedEdgeHandle>,
) -> Result<(), T>
where
T: HasPosition,
TR: Triangulation<Vertex = T>,
{
let next_position = element.position();
let current_angle = pseudo_angle(next_position.to_f64(), center);
let edge_hint = hull.get(current_angle);
let edge = result.directed_edge(edge_hint);
if edge.side_query(next_position).is_on_right_side_or_on_line() {
// The position is, for some reason, not on the left side of the edge. This can e.g. happen
// if the vertices have the same angle. The safest way to include these elements appears to
// skip them and insert them individually at the end (albeit that's very slow)
return Err(element);
}
assert!(edge.is_outer_edge());
let edge = edge.fix();
let new_vertex =
super::dcel_operations::create_new_face_adjacent_to_edge(result.s_mut(), edge, element);
let ccw_walk_start = result.directed_edge(edge).prev().rev().fix();
let cw_walk_start = result.directed_edge(edge).next().rev().fix();
// Check if the edge that was just connected requires legalization
result.legalize_edge(edge);
// At this stage the new vertex was successfully inserted. However, insertions like this will end
// up in a strongly *star shaped* triangulation instead of a nice nearly-convex blob of faces.
//
// To fix this, the algorithm proceeds by connecting some of the adjacent edges and forming new
// faces. A faces is only created if all of its inner angles are less than 90 degrees. This
// tends to be a good heuristic that doesn't create too many skewed triangles which would need
// to be fixed later. Refer to the motivating research paper (see method `bulk_load`) for
// more information.
//
// Before:
//
// outer face
//
// v <--- the new vertex
// /\
// / \ +---- an edge that should potentially not be adjacent to the outer face
// / \ v
// x0----x1--------x2
//
// After:
// *if* the angle between v->x1 and x1->x2 is smaller than 90°, the edge x2->v and its new
// adjacent face is created.
let mut current_edge = ccw_walk_start;
loop {
let handle = result.directed_edge(current_edge);
let prev = handle.prev();
let handle = handle.fix();
let point_projection =
super::math::project_point(next_position, prev.to().position(), prev.from().position());
current_edge = prev.fix();
// `!point_projection.is_after_edge` is used to identify if the new face's angle will be less
// than 90°.
if !point_projection.is_behind_edge() && prev.side_query(next_position).is_on_left_side() {
let new_edge = dcel_operations::create_single_face_between_edge_and_next(
result.s_mut(),
current_edge,
);
buffer_for_edge_legalization.clear();
buffer_for_edge_legalization.push(handle.as_undirected());
buffer_for_edge_legalization.push(current_edge.as_undirected());
result.legalize_edges_after_removal(buffer_for_edge_legalization, |_| false);
current_edge = new_edge;
} else {
break;
}
}
let mut current_edge = cw_walk_start;
// Same as before: Create faces if they will have inner angles less than 90 degrees. This loop
// goes in the other direction (clockwise).
loop {
let handle = result.directed_edge(current_edge);
let next = handle.next();
let handle = handle.fix();
let point_projection =
super::math::project_point(next_position, next.from().position(), next.to().position());
let next_fix = next.fix();
if !point_projection.is_behind_edge() && next.side_query(next_position).is_on_left_side() {
let new_edge = dcel_operations::create_single_face_between_edge_and_next(
result.s_mut(),
current_edge,
);
buffer_for_edge_legalization.clear();
buffer_for_edge_legalization.push(handle.as_undirected());
buffer_for_edge_legalization.push(next_fix.as_undirected());
result.legalize_edges_after_removal(buffer_for_edge_legalization, |_| false);
current_edge = new_edge;
} else {
break;
}
}
let new_vertex = result.vertex(new_vertex);
let outgoing_ch_edge = new_vertex.out_edges().find(|edge| edge.is_outer_edge());
// Fix the hull
if let Some(second_edge) = outgoing_ch_edge {
let first_edge = second_edge.prev();
let first_angle = pseudo_angle(first_edge.from().position().to_f64(), center);
let second_angle = pseudo_angle(second_edge.to().position().to_f64(), center);
hull.insert(
first_angle,
current_angle,
second_angle,
first_edge.fix(),
second_edge.fix(),
);
}
Ok(())
}
/// Makes the outer hull convex. Similar to a graham scan.
fn fix_convexity<TR>(triangulation: &mut TR)
where
TR: Triangulation,
{
let mut edges_to_validate = Vec::with_capacity(2);
let mut convex_edges: Vec<FixedDirectedEdgeHandle> = Vec::with_capacity(64);
let mut current_fixed = triangulation.outer_face().adjacent_edge().unwrap().fix();
loop {
let current_handle = triangulation.directed_edge(current_fixed);
let next_handle = current_handle.next().fix();
convex_edges.push(current_fixed);
current_fixed = next_handle;
while let &[.., edge1_fixed, edge2_fixed] = &*convex_edges {
let edge1 = triangulation.directed_edge(edge1_fixed);
let edge2 = triangulation.directed_edge(edge2_fixed);
let target_position = edge2.to().position();
// Check if the new edge would violate the convex hull property by turning left
// The convex hull must only contain right turns
if edge1.side_query(target_position).is_on_left_side() {
// Violation detected. It is resolved by inserting a new edge
edges_to_validate.push(edge1.fix().as_undirected());
edges_to_validate.push(edge2.fix().as_undirected());
let new_edge = dcel_operations::create_single_face_between_edge_and_next(
triangulation.s_mut(),
edge1_fixed,
);
convex_edges.pop();
convex_edges.pop();
convex_edges.push(new_edge);
triangulation.legalize_edges_after_removal(&mut edges_to_validate, |_| false);
} else {
break;
}
}
if Some(¤t_fixed) == convex_edges.get(1) {
break;
}
}
}
struct Segment {
from: FloatOrd,
to: FloatOrd,
}
impl Segment {
fn new(from: FloatOrd, to: FloatOrd) -> Self {
assert_ne!(from, to);
Self { from, to }
}
/// Returns `true` if this segment does not contain the angle 0.0.
///
/// Pseudo angles wrap back to 0.0 after a full rotation.
fn is_non_wrapping_segment(&self) -> bool {
self.from < self.to
}
fn contains_angle(&self, angle: FloatOrd) -> bool {
if self.is_non_wrapping_segment() {
self.from <= angle && angle < self.to
} else {
self.from <= angle || angle < self.to
}
}
}
#[derive(Clone, Copy, Debug)]
struct Node {
/// Pseudo-angle of this hull entry
angle: FloatOrd,
/// An edge leaving at this hull entry.
edge: FixedDirectedEdgeHandle,
/// Neighbors (indexes into the hull)
left: usize,
right: usize,
}
/// Implements an efficient angle-to-edge lookup for edges of the hull of a triangulation.
///
/// Refer to `bulk_load` (in `bulk_load.rs`) for more background on how this structure is being used.
///
/// It implements an efficient mapping of (pseudo-)angles to edges. To do so, it stores all inserted
/// edges in a linked list backed by a vec. Finding an edge belonging to a given angle can always
/// be done by iterating through this list until the target angle is found.
/// The entries are stored in a consistent order (either clockwise or counter clockwise)
///
/// This naive sequential search is very slow as it needs to traverse half of the list on average.
/// To speed things up, the space space of valid angles (the half open interval [0, 1) )
/// is partitioned into `n` equally sized buckets.
/// For each bucket, `Hull` stores a reference to the list entry with the *biggest angle* that
/// still belongs into that bucket. A sequential search will begin at this bucket and has to traverse
/// only a few elements before finding the target angle.
/// Since the number of buckets is re-adjusted depending on the number of hull entries, this mapping
/// will now be in O(1) for reasonably evenly distributed triangulations.
#[derive(Debug)]
pub struct Hull {
buckets: Vec<usize>,
data: Vec<Node>,
/// Unused indices in data which might be reclaimed later
empty: Vec<usize>,
}
impl Hull {
pub fn from_triangulation<T>(triangulation: &T, center: Point2<f64>) -> Option<Self>
where
T: Triangulation,
{
assert!(!triangulation.all_vertices_on_line());
let hull_size = triangulation.convex_hull_size();
let mut data = Vec::with_capacity(hull_size);
let mut prev_index = hull_size - 1;
for (current_index, edge) in triangulation.convex_hull().enumerate() {
let angle_from = pseudo_angle(edge.from().position().to_f64(), center);
let angle_to = pseudo_angle(edge.to().position().to_f64(), center);
if angle_from == angle_to || angle_from.0.is_nan() || angle_to.0.is_nan() {
// Should only be possible for very degenerate triangulations
return None;
}
let next_index = (current_index + 1) % hull_size;
data.push(Node {
angle: angle_from,
edge: edge.fix(),
left: prev_index,
right: next_index,
});
prev_index = current_index;
}
let mut result = Self {
buckets: Vec::new(),
data,
empty: Vec::new(),
};
const INITIAL_NUMBER_OF_BUCKETS: usize = 8;
result.initialize_buckets(INITIAL_NUMBER_OF_BUCKETS);
Some(result)
}
fn initialize_buckets(&mut self, target_size: usize) {
self.buckets.clear();
self.buckets.reserve(target_size);
const INVALID: usize = usize::MAX;
self.buckets
.extend(core::iter::repeat(INVALID).take(target_size));
let (first_index, current_node) = self
.data
.iter()
.enumerate()
.find(|(index, _)| !self.empty.contains(index))
.unwrap();
let mut current_index = first_index;
let first_bucket = self.ceiled_bucket(current_node.angle);
self.buckets[first_bucket] = current_index;
loop {
let current_node = self.data[current_index];
let segment = self.segment(¤t_node);
let start_bucket = self.ceiled_bucket(segment.from);
let end_bucket = self.ceiled_bucket(segment.to);
self.update_bucket_segment(start_bucket, end_bucket, current_index);
current_index = current_node.right;
if current_index == first_index {
break;
}
}
}
/// Updates the hull after the insertion of a vertex.
///
/// This method should be called after a vertex `v` has been inserted into the outer face of the
/// triangulation under construction.
///
/// Such a vertex is guaranteed to have two outgoing edges that are adjacent to the convex hull,
/// e.g. `e0 -> v -> e1`
///
/// In this scenarios, the parameters should be set as follows:
/// * `left_angle`: `pseudo_angle(e0.from())`
/// * `middle_angle`: `pseudo_angle(v.position())`
/// * `right_angle`: `pseudo_angle(e1.to())`
/// * `left_edge`: `e0.fix()`
/// * `right_edge`: `e1.fix()`
///
/// Note that `left_angle` and `right_angle` must already be present in the hull. Otherwise,
/// calling this method will result in an endless loop.
fn insert(
&mut self,
left_angle: FloatOrd,
middle_angle: FloatOrd,
mut right_angle: FloatOrd,
left_edge: FixedDirectedEdgeHandle,
mut right_edge: FixedDirectedEdgeHandle,
) {
let left_bucket = self.floored_bucket(left_angle);
let mut left_index = self.buckets[left_bucket];
loop {
let current_node = self.data[left_index];
if current_node.angle == left_angle {
break;
}
left_index = current_node.right;
}
let mut right_index;
if left_angle == right_angle {
right_index = left_index;
} else {
right_index = self.data[left_index].right;
loop {
let current_node = self.data[right_index];
if current_node.angle == right_angle {
break;
}
if cfg!(any(fuzzing, test)) {
assert!(!self.empty.contains(&right_index));
}
// Remove current_node - it is completely overlapped by the new segment
self.empty.push(right_index);
self.data[current_node.left].right = current_node.right;
self.data[current_node.right].left = current_node.left;
right_index = current_node.right;
}
}
let new_index = self.get_next_index();
if left_angle == middle_angle {
self.empty.push(left_index);
left_index = self.data[left_index].left;
} else {
self.data[left_index].edge = left_edge;
}
if right_angle == middle_angle {
if left_angle != right_angle {
self.empty.push(right_index);
}
right_edge = self.data[right_index].edge;
right_index = self.data[right_index].right;
right_angle = self.data[right_index].angle;
}
// Stich the vertex between left_index and right_index
self.data[left_index].right = new_index;
self.data[right_index].left = new_index;
let new_node = Node {
angle: middle_angle,
edge: right_edge,
left: left_index,
right: right_index,
};
self.push_or_update_node(new_node, new_index);
// Update bucket entries appropriately
let left_bucket = self.ceiled_bucket(left_angle);
let middle_bucket = self.ceiled_bucket(middle_angle);
let right_bucket = self.ceiled_bucket(right_angle);
self.update_bucket_segment(left_bucket, middle_bucket, left_index);
self.update_bucket_segment(middle_bucket, right_bucket, new_index);
self.adjust_bucket_size_if_necessary();
}
fn get_next_index(&mut self) -> usize {
self.empty.pop().unwrap_or(self.data.len())
}
fn update_bucket_segment(&mut self, left_bucket: usize, right_bucket: usize, new_value: usize) {
if left_bucket <= right_bucket {
for current_bucket in &mut self.buckets[left_bucket..right_bucket] {
*current_bucket = new_value;
}
} else {
// Wrap buckets
for current_bucket in &mut self.buckets[left_bucket..] {
*current_bucket = new_value;
}
for current_bucket in &mut self.buckets[..right_bucket] {
*current_bucket = new_value;
}
}
}
fn push_or_update_node(&mut self, node: Node, index: usize) {
if let Some(existing_node) = self.data.get_mut(index) {
*existing_node = node;
} else {
assert_eq!(self.data.len(), index);
self.data.push(node);
}
}
/// Gets an edge of the hull which covers a given input angle.
///
/// An edge is considered to cover an input angle if the input angle is contained in the angle
/// segment spanned by `pseudo_angle(edge.from()) .. pseudo_angle(edge.from())`
fn get(&self, angle: FloatOrd) -> FixedDirectedEdgeHandle {
let mut current_handle = self.buckets[self.floored_bucket(angle)];
loop {
let current_node = self.data[current_handle];
let left_angle = current_node.angle;
let next_angle = self.data[current_node.right].angle;
if Segment::new(left_angle, next_angle).contains_angle(angle) {
return current_node.edge;
}
current_handle = current_node.right;
}
}
/// Looks up what bucket a given pseudo-angle will fall into.
fn floored_bucket(&self, angle: FloatOrd) -> usize {
((angle.0 * (self.buckets.len()) as f64).floor() as usize) % self.buckets.len()
}
fn ceiled_bucket(&self, angle: FloatOrd) -> usize {
((angle.0 * (self.buckets.len()) as f64).ceil() as usize) % self.buckets.len()
}
fn segment(&self, node: &Node) -> Segment {
Segment::new(node.angle, self.data[node.right].angle)
}
fn adjust_bucket_size_if_necessary(&mut self) {
let size = self.data.len() - self.empty.len();
let num_buckets = self.buckets.len();
const MIN_NUMBER_OF_BUCKETS: usize = 16;
if num_buckets * 2 < size {
// Too few buckets - increase bucket count
self.initialize_buckets(num_buckets * 2);
} else if num_buckets > size * 4 && num_buckets > MIN_NUMBER_OF_BUCKETS {
let new_size = num_buckets / 4;
if new_size >= MIN_NUMBER_OF_BUCKETS {
// Too many buckets - shrink
self.initialize_buckets(new_size);
}
}
}
}
/// Returns a pseudo-angle in the 0-1 range, without expensive trigonometry functions
///
/// The angle has the following shape:
/// ```text
/// 0.25
/// ^ y
/// |
/// |
/// 0 | x
/// <-----------o-----------> 0.5
/// 1 |
/// |
/// |
/// v
/// 0.75
/// ```
#[inline]
fn pseudo_angle(a: Point2<f64>, center: Point2<f64>) -> FloatOrd {
let diff = a.sub(center);
let p = diff.x / (diff.x.abs() + diff.y.abs());
FloatOrd(1.0 - (if diff.y > 0.0 { 3.0 - p } else { 1.0 + p }) * 0.25)
}
fn hull_sanity_check(triangulation: &impl Triangulation, hull: &Hull) {
let non_empty_nodes: Vec<_> = hull
.data
.iter()
.enumerate()
.filter(|(index, _)| !hull.empty.contains(index))
.collect();
for (index, node) in &non_empty_nodes {
let left_node = hull.data[node.left];
let right_node = hull.data[node.right];
let edge = triangulation.directed_edge(node.edge);
assert!(edge.is_outer_edge());
assert!(!hull.empty.contains(&node.left));
assert!(!hull.empty.contains(&node.right));
assert_eq!(left_node.right, *index);
assert_eq!(right_node.left, *index);
}
for (bucket_index, bucket_node) in hull.buckets.iter().enumerate() {
assert!(!hull.empty.contains(bucket_node));
let bucket_start_angle = FloatOrd(bucket_index as f64 / hull.buckets.len() as f64);
for (node_index, node) in &non_empty_nodes {
let segment = hull.segment(node);
if segment.contains_angle(bucket_start_angle) {
// Make sure the bucket refers to the node with the smallest angle in the same bucket
assert_eq!(node_index, bucket_node);
}
}
}
}
#[cfg(test)]
mod test {
use float_next_after::NextAfter;
use rand::{seq::SliceRandom, SeedableRng};
use crate::test_utilities::{random_points_with_seed, SEED2};
use crate::{DelaunayTriangulation, InsertionError, Point2, Triangulation, TriangulationExt};
use super::Hull;
use alloc::vec::Vec;
#[test]
fn test_bulk_load_with_small_number_of_vertices() -> Result<(), InsertionError> {
for size in 0..10 {
let triangulation =
DelaunayTriangulation::<_>::bulk_load(random_points_with_seed(size, SEED2))?;
assert_eq!(triangulation.num_vertices(), size);
triangulation.sanity_check();
}
Ok(())
}
#[test]
fn test_bulk_load_on_grid() -> Result<(), InsertionError> {
// Inserts vertices on whole integer coordinates. This tends provokes special situations,
// e.g. points being inserted exactly on a line.
let mut rng = rand::rngs::StdRng::from_seed(*SEED2);
const TEST_REPETITIONS: usize = 30;
const GRID_SIZE: usize = 20;
for _ in 0..TEST_REPETITIONS {
let mut vertices = Vec::with_capacity(GRID_SIZE * GRID_SIZE);
for x in 0..GRID_SIZE {
for y in 0..GRID_SIZE {
vertices.push(Point2::new(x as f64, y as f64));
}
}
vertices.shuffle(&mut rng);
let triangulation = DelaunayTriangulation::<_>::bulk_load(vertices)?;
assert_eq!(triangulation.num_vertices(), GRID_SIZE * GRID_SIZE);
triangulation.sanity_check();
}
Ok(())
}
#[test]
fn test_bulk_load_on_epsilon_grid() -> Result<(), InsertionError> {
// Inserts vertices on a grid spaced a part by the smallest possible f64 step
let mut rng = rand::rngs::StdRng::from_seed(*SEED2);
const TEST_REPETITIONS: usize = 30;
const GRID_SIZE: usize = 20;
// Contains The first GRID_SIZE f64 values that are >= 0.0
let mut possible_f64: Vec<_> = Vec::with_capacity(GRID_SIZE);
let mut current_float = crate::MIN_ALLOWED_VALUE;
for _ in 0..GRID_SIZE / 2 {
possible_f64.push(current_float);
possible_f64.push(-current_float);
current_float = current_float.next_after(f64::INFINITY);
}
for _ in 0..TEST_REPETITIONS {
let mut vertices = Vec::with_capacity(GRID_SIZE * GRID_SIZE);
for x in 0..GRID_SIZE {
for y in 0..GRID_SIZE {
vertices.push(Point2::new(possible_f64[x], possible_f64[y]));
}
}
vertices.shuffle(&mut rng);
let triangulation = DelaunayTriangulation::<_>::bulk_load(vertices)?;
assert_eq!(triangulation.num_vertices(), GRID_SIZE * GRID_SIZE);
triangulation.sanity_check();
}
Ok(())
}
#[test]
fn test_bulk_load_stable() -> Result<(), InsertionError> {
const SIZE: usize = 200;
let mut vertices = random_points_with_seed(SIZE, SEED2);
vertices.push(Point2::new(4.0, 4.0));
vertices.push(Point2::new(4.0, -4.0));
vertices.push(Point2::new(-4.0, 4.0));
vertices.push(Point2::new(-4.0, -4.0));
vertices.push(Point2::new(5.0, 5.0));
vertices.push(Point2::new(5.0, -5.0));
vertices.push(Point2::new(-5.0, 5.0));
vertices.push(Point2::new(-5.0, -5.0));
vertices.push(Point2::new(6.0, 6.0));
vertices.push(Point2::new(6.0, -6.0));
vertices.push(Point2::new(-6.0, 6.0));
vertices.push(Point2::new(-6.0, -6.0));
let num_vertices = vertices.len();
let triangulation = DelaunayTriangulation::<_>::bulk_load_stable(vertices.clone())?;
triangulation.sanity_check();
assert_eq!(triangulation.num_vertices(), num_vertices);
for (inserted, original) in triangulation.vertices().zip(vertices) {
assert_eq!(inserted.data(), &original);
}
triangulation.sanity_check();
Ok(())
}
#[test]
fn test_bulk_load_stable_with_duplicates() -> Result<(), InsertionError> {
const SIZE: usize = 200;
let mut vertices = random_points_with_seed(SIZE, SEED2);
let original = vertices.clone();
let duplicates = vertices.iter().copied().take(SIZE / 10).collect::<Vec<_>>();
for (index, d) in duplicates.into_iter().enumerate() {
vertices.insert(index * 2, d);
}
let triangulation = DelaunayTriangulation::<_>::bulk_load_stable(vertices)?;
triangulation.sanity_check();
assert_eq!(triangulation.num_vertices(), SIZE);
for (inserted, original) in triangulation.vertices().zip(original) {
assert_eq!(inserted.data(), &original);
}
triangulation.sanity_check();
Ok(())
}
#[test]
fn test_bulk_load() -> Result<(), InsertionError> {
const SIZE: usize = 9000;
let mut vertices = random_points_with_seed(SIZE, SEED2);
vertices.push(Point2::new(4.0, 4.0));
vertices.push(Point2::new(4.0, -4.0));
vertices.push(Point2::new(-4.0, 4.0));
vertices.push(Point2::new(-4.0, -4.0));
vertices.push(Point2::new(5.0, 5.0));
vertices.push(Point2::new(5.0, -5.0));
vertices.push(Point2::new(-5.0, 5.0));
vertices.push(Point2::new(-5.0, -5.0));
vertices.push(Point2::new(6.0, 6.0));
vertices.push(Point2::new(6.0, -6.0));
vertices.push(Point2::new(-6.0, 6.0));
vertices.push(Point2::new(-6.0, -6.0));
let num_vertices = vertices.len();
let triangulation = DelaunayTriangulation::<Point2<f64>>::bulk_load(vertices)?;
triangulation.sanity_check();
assert_eq!(triangulation.num_vertices(), num_vertices);
Ok(())
}
#[test]
fn test_same_vertex_bulk_load() -> Result<(), InsertionError> {
const SIZE: usize = 100;
let mut vertices = random_points_with_seed(SIZE, SEED2);
for i in 0..SIZE - 5 {
vertices.insert(i * 2, Point2::new(0.5, 0.2));
}
let triangulation = DelaunayTriangulation::<Point2<f64>>::bulk_load(vertices)?;
triangulation.sanity_check();
assert_eq!(triangulation.num_vertices(), SIZE + 1);
Ok(())
}
#[test]
fn test_hull() -> Result<(), InsertionError> {
let mut triangulation = DelaunayTriangulation::<_>::new();
triangulation.insert(Point2::new(1.0, 1.0))?; // Angle: 0.375
triangulation.insert(Point2::new(1.0, -1.0))?; // Angle: 0.125
triangulation.insert(Point2::new(-1.0, 1.0))?; // Angle: 0.625
triangulation.insert(Point2::new(-1.0, -1.0))?; // Angle: 0.875
let mut hull = Hull::from_triangulation(&triangulation, Point2::new(0.0, 0.0)).unwrap();
super::hull_sanity_check(&triangulation, &hull);
let center = Point2::new(0.0, 0.0);
let additional_elements = [
Point2::new(0.4, 2.0),
Point2::new(-0.4, 3.0),
Point2::new(-0.4, -4.0),
Point2::new(3.0, 5.0),
];
for (index, element) in additional_elements.iter().enumerate() {
super::single_bulk_insertion_step(
&mut triangulation,
center,
&mut hull,
*element,
&mut Vec::new(),
)
.unwrap();
if index != 0 {
super::hull_sanity_check(&triangulation, &hull)
}
}
Ok(())
}
}