1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
use super::delaunay_core::Dcel;
use crate::{
handles::VertexHandle, HasPosition, HintGenerator, InsertionError, LastUsedVertexHintGenerator,
NaturalNeighbor, Point2, Triangulation, TriangulationExt,
};
use alloc::vec::Vec;
use num_traits::Float;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// A two dimensional [Delaunay triangulation](https://en.wikipedia.org/wiki/Delaunay_triangulation).
///
/// A Delaunay triangulation a triangulation that fulfills the *Delaunay Property*: No
/// vertex of the triangulation is contained in the
/// [circumcircle](https://en.wikipedia.org/wiki/Circumscribed_circle) of any triangle.
/// As a consequence, Delaunay triangulations are well suited to support interpolation
/// algorithms and nearest neighbor searches. It is often constructed in order to retrieve its dual
/// graph, the [Voronoi diagram](#voronoi-diagram).
///
#[doc = include_str!("../images/circumcircle.svg")]
///
/// *An example triangulation with a few circumcircles drawn. No circumcircle contains more than three vertices.*
///
/// Most methods on this type require the [Triangulation] trait. Refer to its documentation
/// for more details on how to use `DelaunayTriangulation`.
///
/// # Basic Usage
/// Vertices need to implement the [HasPosition] trait. Spade bundles
/// the [Point2](crate::Point2) struct for basic use cases.
///
/// ## Basic example
/// ```
/// use spade::{DelaunayTriangulation, Triangulation, Point2, InsertionError};
///
/// fn main() -> Result<(), InsertionError> {
///
/// let mut triangulation: DelaunayTriangulation<_> = DelaunayTriangulation::new();
///
/// // Insert three vertices that span one triangle (face)
/// triangulation.insert(Point2::new(0.0, 1.0))?;
/// triangulation.insert(Point2::new(1.0, 1.0))?;
/// triangulation.insert(Point2::new(0.5, -1.0))?;
///
/// assert_eq!(triangulation.num_vertices(), 3);
/// assert_eq!(triangulation.num_inner_faces(), 1);
/// assert_eq!(triangulation.num_undirected_edges(), 3);
/// Ok(())
/// }
/// ```
/// ## Right handed and left handed coordinate systems
/// For simplicity, all method names and their documentation assume that the underlying coordinate system
/// is right handed (e.g. x axis points to the right, y axis points upwards). If a left handed system
/// (lhs) is used, any term related to orientation needs to be reversed:
/// - "left" becomes "right" (example: the face of a directed edge is on the right side for a lhs
/// - "counter clock wise" becomes "clockwise" (example: the vertices of a face are returned in clock wise order for a lhs)
///
/// <table>
/// <tr><th>left handed system</th><th>right handed system</th></tr>
/// <tr><td>
#[doc = concat!(include_str!("../images/lhs.svg"), "</td><td>",include_str!("../images/rhs.svg"), " </td></tr></table>")]
/// # Extracting geometry information
///
/// Spade uses [handles](crate::handles) to extract the triangulation's geometry.
/// Handles are usually retrieved by inserting a vertex or by iterating.
///
/// ## Example
/// ```
/// fn main() -> Result<(), spade::InsertionError> {
/// use crate::spade::{DelaunayTriangulation, Triangulation, Point2};
///
/// let mut triangulation: DelaunayTriangulation<Point2<f64>> = DelaunayTriangulation::new();
///
/// triangulation.insert(Point2::new(0.0, 1.0))?;
/// triangulation.insert(Point2::new(1.0, 1.0))?;
/// triangulation.insert(Point2::new(0.5, -1.0))?;
///
/// for face in triangulation.inner_faces() {
/// // face is a FaceHandle
/// // edges is an array containing 3 directed edge handles
/// let edges = face.adjacent_edges();
/// for edge in &edges {
/// let from = edge.from();
/// let to = edge.to();
/// // from and to are vertex handles
/// println!("found an edge: {:?} -> {:?}", from, to);
/// }
///
/// // vertices is an array containing 3 vertex handles
/// let vertices = face.vertices();
/// for vertex in &vertices {
/// println!("Found vertex with position {:?}", vertex.position());
/// }
/// }
/// # Ok(()) }
/// ```
///
/// # Type parameters
/// The triangulation's vertices, edges and faces can contain custom data.
/// By default, the edge and face types are set to `()`. The vertex type must
/// be specified.
///
/// * `V: HasPosition` The vertex type
/// * `DE: Default` The directed edge type.
/// * `UE: Default` The undirected edge type.
/// * `F: Default` The face type.
///
/// Only vertices can be inserted directly. Faces and edges are create via `Default::default()`.
/// Usually, edge and face data will need to be modified in a separate pass.
///
/// Setting any custom data works by calling [vertex_data_mut](Triangulation::vertex_data_mut),
/// [directed_edge_data_mut](Triangulation::directed_edge_data_mut),
/// [undirected_edge_data_mut](Triangulation::undirected_edge_data_mut) and
/// [face_data_mut](Triangulation::face_data_mut).
///
/// ## Example
/// ```
/// fn main() -> Result<(), spade::InsertionError> {
/// use crate::spade::{DelaunayTriangulation, Triangulation, Point2};
///
/// // A custom undirected edge type used to cache the length of an edge
/// #[derive(Default)]
/// struct EdgeWithLength { length: f64 }
///
/// // Creates a new triangulation with a custom undirected edge type
/// let mut triangulation: DelaunayTriangulation<Point2<f64>, (), EdgeWithLength>
/// = DelaunayTriangulation::new();
///
/// triangulation.insert(Point2::new(0.0, 1.0))?;
/// triangulation.insert(Point2::new(1.0, 1.0))?;
/// triangulation.insert(Point2::new(0.5, -1.0))?;
///
/// for edge in triangulation.fixed_undirected_edges() {
/// let positions = triangulation.undirected_edge(edge).positions();
/// let length = positions[0].distance_2(positions[1]).sqrt();
/// // Write length into the edge data
/// triangulation.undirected_edge_data_mut(edge).length = length;
/// }
///
/// for edge in triangulation.undirected_edges() {
/// let length = edge.data().length;
/// assert!(length > 0.0);
/// }
/// # Ok(()) }
/// ```
///
/// # Outer face
/// Every triangulation contains an *outer face* that is adjacent to all edges of the
/// triangulation's convex hull. The outer face is even present for a triangulation without
/// vertices. It is either referenced by calling [Triangulation::outer_face()] or
/// [handles::OUTER_FACE](crate::handles::OUTER_FACE)
///
#[doc = include_str!("../images/outer_faces.svg")]
///
/// # Voronoi Diagram
///
/// the dual graph of the Delaunay triangulation is the *Voronoi diagram*. The Voronoi diagram
/// subdivides the plane into several *Voronoi cells* (called `VoronoiFace` by Spade for consistency)
/// which contain all points in the plane that share a common nearest neighbor.
///
/// Keep in mind that "faces" and "vertices" are swapped - an (inner) Voronoi *vertex*
/// corresponds to a single Delaunay *face*.
/// The position of an inner voronoi vertex is the *circumcenter* of its dual Delaunay
/// face.
///
#[doc = include_str!("../images/basic_voronoi.svg")]
///
/// *A Delaunay triangulation (black lines) and its dual graph, the Voronoi diagram (blue lines)*
///
/// ## Extracting the Voronoi Diagram
/// Spade defines various functions to extract information about the Voronoi diagram:
///
/// **Types**
/// * [DirectedVoronoiEdge](crate::handles::DirectedVoronoiEdge)
/// * [UndirectedVoronoiEdge](crate::handles::UndirectedVoronoiEdge)
/// * [VoronoiVertex](crate::handles::VoronoiVertex)
/// * [VoronoiFace](crate::handles::VoronoiFace)
///
/// **Iterators**
/// * [Triangulation::directed_voronoi_edges()]
/// * [Triangulation::undirected_voronoi_edges()]
///
/// **Conversion**
/// * [DirectedVoronoiEdge::as_undirected()](crate::handles::DirectedVoronoiEdge::as_undirected())
/// * [UndirectedVoronoiEdge::as_directed()](crate::handles::UndirectedVoronoiEdge::as_directed())
/// * [DirectedEdgeHandle::as_voronoi_edge()](crate::handles::DirectedEdgeHandle::as_voronoi_edge())
/// * [DirectedVoronoiEdge::as_delaunay_edge()](crate::handles::DirectedVoronoiEdge::as_delaunay_edge())
/// * [UndirectedEdgeHandle::as_voronoi_edge()](crate::handles::UndirectedEdgeHandle::as_voronoi_edge())
/// * [UndirectedVoronoiEdge::as_delaunay_edge()](crate::handles::UndirectedVoronoiEdge::as_delaunay_edge())
///
/// ## Extracting the Voronoi Diagram (Example)
/// Extracting the geometry of the voronoi diagram can be slightly tricky as some of the voronoi
/// extend into infinity (see the dashed lines in the example above).
///
/// ```
/// use spade::handles::{VoronoiVertex::Inner, VoronoiVertex::Outer};
/// use spade::{DelaunayTriangulation, Point2, Triangulation};
///
/// // Prints out the location of all voronoi edges in a triangulation
/// fn log_voronoi_diagram(triangulation: &DelaunayTriangulation<Point2<f64>>) {
/// for edge in triangulation.undirected_voronoi_edges() {
/// match edge.vertices() {
/// [Inner(from), Inner(to)] => {
/// // "from" and "to" are inner faces of the Delaunay triangulation
/// println!(
/// "Found voronoi edge between {:?} and {:?}",
/// from.circumcenter(),
/// to.circumcenter()
/// );
/// }
/// [Inner(from), Outer(edge)] | [Outer(edge), Inner(from)] => {
/// // Some lines don't have a finite end and extend into infinity.
/// println!(
/// "Found infinite voronoi edge going out of {:?} into the direction {:?}",
/// from.circumcenter(),
/// edge.direction_vector()
/// );
/// }
/// [Outer(_), Outer(_)] => {
/// // This case only happens if all vertices of the triangulation lie on the
/// // same line and can probably be ignored.
/// }
/// }
/// }
/// }
/// ```
///
/// # Performance tuning
///
/// Fine-tuning a Delaunay triangulation can be more tricky from time to time. However, some will *nearly always* be
/// the right thing to do:
///
/// - Measure, don't guess. Execution times are hard to predict.
/// - If you plan to perform several random access queries (e.g. looking up the point at an arbitrary position):
/// Consider using `[HierarchyHintGenerator](crate::HierarchyHintGenerator)
/// - For data sets with uniformly distributed vertices: Use [HierarchyHintGenerator](crate::HierarchyHintGenerator) if
/// bulk loading is not applicable.
/// - For data sets where vertices are inserted in close local proximity (each vertex is not too far away from the
/// previously inserted vertex): Consider using [LastUsedVertexHintGenerator](crate::LastUsedVertexHintGenerator).
/// - Try to avoid large custom data types for edges, vertices and faces.
/// - Using `f64` and `f32` as scalar type will usually end up roughly having the same run time performance.
/// - Prefer using [bulk_load](Triangulation::bulk_load) over [insert](Triangulation::insert).
/// - The run time of all vertex operations (insertion, removal and lookup) is roughly the same for larger triangulations.
///
/// ## Complexity classes
///
/// This table display the average and amortized cost for inserting a vertex into a triangulation with `n` vertices.
///
/// | | Uniformly distributed vertices | Insertion of vertices with local proximity |
/// |-----------------------------|--------------------------------|--------------------------------------------|
/// | LastUsedVertexHintGenerator | O(sqrt(n)) (worst case) | O(1) (best case), fastest |
/// | HierarchyHintGenerator | O(log(n)) (Average case) | O(1) (best case) |
///
/// # See also
/// Delaunay triangulations are closely related to [constrained Delaunay triangulations](crate::ConstrainedDelaunayTriangulation)
#[doc(alias = "Voronoi")]
#[doc(alias = "Voronoi diagram")]
#[doc(alias = "Delaunay")]
#[derive(Debug, Clone)]
#[cfg_attr(
feature = "serde",
derive(Serialize, Deserialize),
serde(crate = "serde")
)]
pub struct DelaunayTriangulation<V, DE = (), UE = (), F = (), L = LastUsedVertexHintGenerator>
where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
pub(crate) dcel: Dcel<V, DE, UE, F>,
pub(crate) hint_generator: L,
}
impl<V, DE, UE, F, L> DelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
/// Returns the nearest neighbor of a given input vertex.
///
/// Returns `None` if the triangulation is empty.
///
/// # Runtime
/// This method takes `O(sqrt(n))` on average where n is the number of vertices.
pub fn nearest_neighbor(
&self,
position: Point2<<V as HasPosition>::Scalar>,
) -> Option<VertexHandle<V, DE, UE, F>> {
if self.num_vertices() == 0 {
return None;
}
let hint = self.hint_generator().get_hint(position);
let hint = self.validate_vertex_handle(hint);
let vertex = self.walk_to_nearest_neighbor(hint, position);
self.hint_generator().notify_vertex_lookup(vertex.fix());
Some(vertex)
}
/// Creates a new delaunay triangulation with an efficient bulk loading strategy.
///
/// In contrast to [Triangulation::bulk_load], this method will create a triangulation with
/// vertices returned *in the same order* as the input vertices.
///
/// # Duplicate handling
///
/// If two vertices have the same position, only one of them will be included in the final
/// triangulation. It is undefined which of them is discarded.
///
/// For example, if the input vertices are [v0, v1, v2, v1] (where v1 is duplicated), the
/// resulting triangulation will be either
/// [v0, v1, v2] or [v0, v2, v1]
///
/// Consider checking the triangulation's size after calling this method to ensure that no
/// duplicates were present.
///
/// # Example
/// ```
/// # use spade::InsertionError;
/// use spade::{DelaunayTriangulation, Point2, Triangulation};
///
/// # fn main() -> Result<(), InsertionError> {
/// let vertices = vec![
/// Point2::new(0.5, 1.0),
/// Point2::new(-0.5, 2.0),
/// Point2::new(0.2, 3.0),
/// Point2::new(0.0, 4.0),
/// Point2::new(-0.2, 5.0)
/// ];
/// let triangulation = DelaunayTriangulation::<Point2<f64>>::bulk_load_stable(vertices.clone())?;
/// // This assert will not hold for regular bulk loading!
/// assert_eq!(triangulation.vertices().map(|v| *v.data()).collect::<Vec<_>>(), vertices);
///
/// // This is how you would check for duplicates:
/// let duplicates_found = triangulation.num_vertices() < vertices.len();
/// assert!(!duplicates_found);
/// # Ok(()) }
/// ```
pub fn bulk_load_stable(elements: Vec<V>) -> Result<Self, InsertionError> {
let result: Self =
crate::delaunay_core::bulk_load_stable::<_, _, DelaunayTriangulation<_, _, _, _, _>>(
elements,
)?;
Ok(result)
}
}
impl<V, DE, UE, F, L> Default for DelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
fn default() -> Self {
Self {
dcel: Default::default(),
hint_generator: Default::default(),
}
}
}
impl<V, DE, UE, F, L> DelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
V::Scalar: Float,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
/// Allows using natural neighbor interpolation on this triangulation. Refer to the documentation
/// of [NaturalNeighbor] for more information.
pub fn natural_neighbor(&self) -> NaturalNeighbor<Self> {
NaturalNeighbor::new(self)
}
}
impl<V, DE, UE, F, L> Triangulation for DelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
{
type Vertex = V;
type DirectedEdge = DE;
type UndirectedEdge = UE;
type Face = F;
type HintGenerator = L;
fn s(&self) -> &Dcel<V, DE, UE, F> {
&self.dcel
}
fn s_mut(&mut self) -> &mut Dcel<V, DE, UE, F> {
&mut self.dcel
}
fn hint_generator(&self) -> &Self::HintGenerator {
&self.hint_generator
}
fn hint_generator_mut(&mut self) -> &mut Self::HintGenerator {
&mut self.hint_generator
}
fn from_parts(
dcel: Dcel<Self::Vertex, Self::DirectedEdge, Self::UndirectedEdge, Self::Face>,
hint_generator: Self::HintGenerator,
num_constraints: usize,
) -> Self {
assert_eq!(num_constraints, 0);
Self {
dcel,
hint_generator,
}
}
fn into_parts(
self,
) -> (
Dcel<Self::Vertex, Self::DirectedEdge, Self::UndirectedEdge, Self::Face>,
Self::HintGenerator,
) {
(self.dcel, self.hint_generator)
}
}
#[cfg(test)]
mod test {
use crate::test_utilities::{random_points_with_seed, SEED};
use crate::{DelaunayTriangulation, InsertionError, Point2, Triangulation};
#[allow(unused)]
#[cfg(feature = "serde")]
// Just needs to compile
fn check_serde() {
use serde::{Deserialize, Serialize};
use crate::{HierarchyHintGenerator, LastUsedVertexHintGenerator, Point2};
fn requires_serde<'de, T: Serialize + Deserialize<'de>>() {}
type DT<L> = super::DelaunayTriangulation<Point2<f64>, (), (), (), L>;
requires_serde::<DT<LastUsedVertexHintGenerator>>();
requires_serde::<DT<HierarchyHintGenerator<f64>>>();
}
#[test]
fn test_nearest_neighbor() -> Result<(), InsertionError> {
const SIZE: usize = 54;
let points = random_points_with_seed(SIZE, SEED);
let d = DelaunayTriangulation::<_>::bulk_load(points.clone())?;
let sample_points = random_points_with_seed(SIZE * 3, SEED);
for p in sample_points {
let nn_delaunay = d.nearest_neighbor(p);
let nn_linear_search = points.iter().min_by(|l, r| {
let d1 = l.distance_2(p);
let d2 = r.distance_2(p);
d1.partial_cmp(&d2).unwrap()
});
assert_eq!(nn_delaunay.map(|p| p.position()), nn_linear_search.cloned());
}
Ok(())
}
#[test]
fn test_nearest_neighbor_small() -> Result<(), InsertionError> {
let mut d = DelaunayTriangulation::<_>::new();
assert_eq!(None, d.nearest_neighbor(Point2::new(0.0, 0.0)));
d.insert(Point2::new(0.0, 0.0))?;
assert!(d.nearest_neighbor(Point2::new(0.0, 1.0)).is_some());
Ok(())
}
#[test]
#[allow(clippy::redundant_clone)]
#[allow(unused_must_use)]
fn test_clone_is_implemented() {
// Just needs to compile
DelaunayTriangulation::<Point2<f64>>::new().clone();
}
}