1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
//! Module defining an Either type.
use std::{
future::Future,
io::SeekFrom,
pin::Pin,
task::{Context, Poll},
};
use tokio::io::{AsyncBufRead, AsyncRead, AsyncSeek, AsyncWrite, ReadBuf, Result};
/// Combines two different futures, streams, or sinks having the same associated types into a single type.
///
/// This type implements common asynchronous traits such as [`Future`] and those in Tokio.
///
/// [`Future`]: std::future::Future
///
/// # Example
///
/// The following code will not work:
///
/// ```compile_fail
/// # fn some_condition() -> bool { true }
/// # async fn some_async_function() -> u32 { 10 }
/// # async fn other_async_function() -> u32 { 20 }
/// #[tokio::main]
/// async fn main() {
/// let result = if some_condition() {
/// some_async_function()
/// } else {
/// other_async_function() // <- Will print: "`if` and `else` have incompatible types"
/// };
///
/// println!("Result is {}", result.await);
/// }
/// ```
///
// This is because although the output types for both futures is the same, the exact future
// types are different, but the compiler must be able to choose a single type for the
// `result` variable.
///
/// When the output type is the same, we can wrap each future in `Either` to avoid the
/// issue:
///
/// ```
/// use tokio_util::either::Either;
/// # fn some_condition() -> bool { true }
/// # async fn some_async_function() -> u32 { 10 }
/// # async fn other_async_function() -> u32 { 20 }
///
/// #[tokio::main]
/// async fn main() {
/// let result = if some_condition() {
/// Either::Left(some_async_function())
/// } else {
/// Either::Right(other_async_function())
/// };
///
/// let value = result.await;
/// println!("Result is {}", value);
/// # assert_eq!(value, 10);
/// }
/// ```
#[allow(missing_docs)] // Doc-comments for variants in this particular case don't make much sense.
#[derive(Debug, Clone)]
pub enum Either<L, R> {
Left(L),
Right(R),
}
/// A small helper macro which reduces amount of boilerplate in the actual trait method implementation.
/// It takes an invocation of method as an argument (e.g. `self.poll(cx)`), and redirects it to either
/// enum variant held in `self`.
macro_rules! delegate_call {
($self:ident.$method:ident($($args:ident),+)) => {
unsafe {
match $self.get_unchecked_mut() {
Self::Left(l) => Pin::new_unchecked(l).$method($($args),+),
Self::Right(r) => Pin::new_unchecked(r).$method($($args),+),
}
}
}
}
impl<L, R, O> Future for Either<L, R>
where
L: Future<Output = O>,
R: Future<Output = O>,
{
type Output = O;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
delegate_call!(self.poll(cx))
}
}
impl<L, R> AsyncRead for Either<L, R>
where
L: AsyncRead,
R: AsyncRead,
{
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<Result<()>> {
delegate_call!(self.poll_read(cx, buf))
}
}
impl<L, R> AsyncBufRead for Either<L, R>
where
L: AsyncBufRead,
R: AsyncBufRead,
{
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
delegate_call!(self.poll_fill_buf(cx))
}
fn consume(self: Pin<&mut Self>, amt: usize) {
delegate_call!(self.consume(amt));
}
}
impl<L, R> AsyncSeek for Either<L, R>
where
L: AsyncSeek,
R: AsyncSeek,
{
fn start_seek(self: Pin<&mut Self>, position: SeekFrom) -> Result<()> {
delegate_call!(self.start_seek(position))
}
fn poll_complete(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<u64>> {
delegate_call!(self.poll_complete(cx))
}
}
impl<L, R> AsyncWrite for Either<L, R>
where
L: AsyncWrite,
R: AsyncWrite,
{
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
delegate_call!(self.poll_write(cx, buf))
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<tokio::io::Result<()>> {
delegate_call!(self.poll_flush(cx))
}
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<tokio::io::Result<()>> {
delegate_call!(self.poll_shutdown(cx))
}
}
impl<L, R> futures_core::stream::Stream for Either<L, R>
where
L: futures_core::stream::Stream,
R: futures_core::stream::Stream<Item = L::Item>,
{
type Item = L::Item;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
delegate_call!(self.poll_next(cx))
}
}
#[cfg(test)]
mod tests {
use super::*;
use tokio::io::{repeat, AsyncReadExt, Repeat};
use tokio_stream::{once, Once, StreamExt};
#[tokio::test]
async fn either_is_stream() {
let mut either: Either<Once<u32>, Once<u32>> = Either::Left(once(1));
assert_eq!(Some(1u32), either.next().await);
}
#[tokio::test]
async fn either_is_async_read() {
let mut buffer = [0; 3];
let mut either: Either<Repeat, Repeat> = Either::Right(repeat(0b101));
either.read_exact(&mut buffer).await.unwrap();
assert_eq!(buffer, [0b101, 0b101, 0b101]);
}
}