Struct alga::general::Multiplicative
source · pub struct Multiplicative;
Expand description
The multiplication operator, commonly symbolized by ×
.
Trait Implementations§
source§impl AbstractGroupAbelian<Multiplicative> for f32
impl AbstractGroupAbelian<Multiplicative> for f32
source§fn prop_is_commutative_approx(args: (Self, Self)) -> boolwhere
Self: RelativeEq,
fn prop_is_commutative_approx(args: (Self, Self)) -> boolwhere
Self: RelativeEq,
Returns
true
if the operator is commutative for the given argument tuple. Approximate
equality is used for verifications.source§impl AbstractGroupAbelian<Multiplicative> for f64
impl AbstractGroupAbelian<Multiplicative> for f64
source§fn prop_is_commutative_approx(args: (Self, Self)) -> boolwhere
Self: RelativeEq,
fn prop_is_commutative_approx(args: (Self, Self)) -> boolwhere
Self: RelativeEq,
Returns
true
if the operator is commutative for the given argument tuple. Approximate
equality is used for verifications.source§impl<N: Num + Clone> AbstractMagma<Multiplicative> for Complex<N>
impl<N: Num + Clone> AbstractMagma<Multiplicative> for Complex<N>
source§impl AbstractMagma<Multiplicative> for f32
impl AbstractMagma<Multiplicative> for f32
source§impl AbstractMagma<Multiplicative> for f64
impl AbstractMagma<Multiplicative> for f64
source§impl AbstractMagma<Multiplicative> for i128
impl AbstractMagma<Multiplicative> for i128
source§impl AbstractMagma<Multiplicative> for i16
impl AbstractMagma<Multiplicative> for i16
source§impl AbstractMagma<Multiplicative> for i32
impl AbstractMagma<Multiplicative> for i32
source§impl AbstractMagma<Multiplicative> for i64
impl AbstractMagma<Multiplicative> for i64
source§impl AbstractMagma<Multiplicative> for i8
impl AbstractMagma<Multiplicative> for i8
source§impl AbstractMagma<Multiplicative> for isize
impl AbstractMagma<Multiplicative> for isize
source§impl AbstractMagma<Multiplicative> for u128
impl AbstractMagma<Multiplicative> for u128
source§impl AbstractMagma<Multiplicative> for u16
impl AbstractMagma<Multiplicative> for u16
source§impl AbstractMagma<Multiplicative> for u32
impl AbstractMagma<Multiplicative> for u32
source§impl AbstractMagma<Multiplicative> for u64
impl AbstractMagma<Multiplicative> for u64
source§impl AbstractMagma<Multiplicative> for u8
impl AbstractMagma<Multiplicative> for u8
source§impl AbstractMagma<Multiplicative> for usize
impl AbstractMagma<Multiplicative> for usize
source§impl AbstractMonoid<Multiplicative> for f32
impl AbstractMonoid<Multiplicative> for f32
source§fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> boolwhere
Self: RelativeEq,
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> boolwhere
Self: RelativeEq,
Checks whether operating with the identity element is a no-op for the given
argument. Approximate equality is used for verifications.
source§impl AbstractMonoid<Multiplicative> for f64
impl AbstractMonoid<Multiplicative> for f64
source§fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> boolwhere
Self: RelativeEq,
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> boolwhere
Self: RelativeEq,
Checks whether operating with the identity element is a no-op for the given
argument. Approximate equality is used for verifications.
source§impl AbstractMonoid<Multiplicative> for i128
impl AbstractMonoid<Multiplicative> for i128
source§impl AbstractMonoid<Multiplicative> for i16
impl AbstractMonoid<Multiplicative> for i16
source§impl AbstractMonoid<Multiplicative> for i32
impl AbstractMonoid<Multiplicative> for i32
source§impl AbstractMonoid<Multiplicative> for i64
impl AbstractMonoid<Multiplicative> for i64
source§impl AbstractMonoid<Multiplicative> for i8
impl AbstractMonoid<Multiplicative> for i8
source§impl AbstractMonoid<Multiplicative> for isize
impl AbstractMonoid<Multiplicative> for isize
source§impl AbstractMonoid<Multiplicative> for u128
impl AbstractMonoid<Multiplicative> for u128
source§impl AbstractMonoid<Multiplicative> for u16
impl AbstractMonoid<Multiplicative> for u16
source§impl AbstractMonoid<Multiplicative> for u32
impl AbstractMonoid<Multiplicative> for u32
source§impl AbstractMonoid<Multiplicative> for u64
impl AbstractMonoid<Multiplicative> for u64
source§impl AbstractMonoid<Multiplicative> for u8
impl AbstractMonoid<Multiplicative> for u8
source§impl AbstractMonoid<Multiplicative> for usize
impl AbstractMonoid<Multiplicative> for usize
source§impl AbstractQuasigroup<Multiplicative> for f32
impl AbstractQuasigroup<Multiplicative> for f32
source§fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> boolwhere
Self: RelativeEq,
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> boolwhere
Self: RelativeEq,
Returns
true
if latin squareness holds for the given arguments. Approximate
equality is used for verifications. Read moresource§impl AbstractQuasigroup<Multiplicative> for f64
impl AbstractQuasigroup<Multiplicative> for f64
source§fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> boolwhere
Self: RelativeEq,
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> boolwhere
Self: RelativeEq,
Returns
true
if latin squareness holds for the given arguments. Approximate
equality is used for verifications. Read moresource§impl AbstractSemigroup<Multiplicative> for f32
impl AbstractSemigroup<Multiplicative> for f32
source§fn prop_is_associative_approx(args: (Self, Self, Self)) -> boolwhere
Self: RelativeEq,
fn prop_is_associative_approx(args: (Self, Self, Self)) -> boolwhere
Self: RelativeEq,
Returns
true
if associativity holds for the given arguments. Approximate equality is used
for verifications.source§impl AbstractSemigroup<Multiplicative> for f64
impl AbstractSemigroup<Multiplicative> for f64
source§fn prop_is_associative_approx(args: (Self, Self, Self)) -> boolwhere
Self: RelativeEq,
fn prop_is_associative_approx(args: (Self, Self, Self)) -> boolwhere
Self: RelativeEq,
Returns
true
if associativity holds for the given arguments. Approximate equality is used
for verifications.source§impl AbstractSemigroup<Multiplicative> for i128
impl AbstractSemigroup<Multiplicative> for i128
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for i16
impl AbstractSemigroup<Multiplicative> for i16
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for i32
impl AbstractSemigroup<Multiplicative> for i32
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for i64
impl AbstractSemigroup<Multiplicative> for i64
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for i8
impl AbstractSemigroup<Multiplicative> for i8
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for isize
impl AbstractSemigroup<Multiplicative> for isize
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for u128
impl AbstractSemigroup<Multiplicative> for u128
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for u16
impl AbstractSemigroup<Multiplicative> for u16
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for u32
impl AbstractSemigroup<Multiplicative> for u32
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for u64
impl AbstractSemigroup<Multiplicative> for u64
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for u8
impl AbstractSemigroup<Multiplicative> for u8
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl AbstractSemigroup<Multiplicative> for usize
impl AbstractSemigroup<Multiplicative> for usize
source§fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
fn prop_is_associative(args: (Self, Self, Self)) -> boolwhere
Self: Eq,
Returns
true
if associativity holds for the given arguments.source§impl Clone for Multiplicative
impl Clone for Multiplicative
source§fn clone(&self) -> Multiplicative
fn clone(&self) -> Multiplicative
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl Identity<Multiplicative> for f32
impl Identity<Multiplicative> for f32
source§impl Identity<Multiplicative> for f64
impl Identity<Multiplicative> for f64
source§impl Identity<Multiplicative> for i128
impl Identity<Multiplicative> for i128
source§impl Identity<Multiplicative> for i16
impl Identity<Multiplicative> for i16
source§impl Identity<Multiplicative> for i32
impl Identity<Multiplicative> for i32
source§impl Identity<Multiplicative> for i64
impl Identity<Multiplicative> for i64
source§impl Identity<Multiplicative> for i8
impl Identity<Multiplicative> for i8
source§impl Identity<Multiplicative> for isize
impl Identity<Multiplicative> for isize
source§impl Identity<Multiplicative> for u128
impl Identity<Multiplicative> for u128
source§impl Identity<Multiplicative> for u16
impl Identity<Multiplicative> for u16
source§impl Identity<Multiplicative> for u32
impl Identity<Multiplicative> for u32
source§impl Identity<Multiplicative> for u64
impl Identity<Multiplicative> for u64
source§impl Identity<Multiplicative> for u8
impl Identity<Multiplicative> for u8
source§impl Identity<Multiplicative> for usize
impl Identity<Multiplicative> for usize
source§impl Operator for Multiplicative
impl Operator for Multiplicative
source§fn operator_token() -> Self
fn operator_token() -> Self
Returns the structure that identifies the operator.
source§impl<N: Num + Clone + ClosedNeg> TwoSidedInverse<Multiplicative> for Complex<N>
impl<N: Num + Clone + ClosedNeg> TwoSidedInverse<Multiplicative> for Complex<N>
source§fn two_sided_inverse(&self) -> Self
fn two_sided_inverse(&self) -> Self
source§fn two_sided_inverse_mut(&mut self)
fn two_sided_inverse_mut(&mut self)
source§impl TwoSidedInverse<Multiplicative> for f32
impl TwoSidedInverse<Multiplicative> for f32
source§fn two_sided_inverse(&self) -> f32
fn two_sided_inverse(&self) -> f32
source§fn two_sided_inverse_mut(&mut self)
fn two_sided_inverse_mut(&mut self)
source§impl TwoSidedInverse<Multiplicative> for f64
impl TwoSidedInverse<Multiplicative> for f64
source§fn two_sided_inverse(&self) -> f64
fn two_sided_inverse(&self) -> f64
source§fn two_sided_inverse_mut(&mut self)
fn two_sided_inverse_mut(&mut self)
impl<N> AbstractGroup<Multiplicative> for Complex<N>
impl AbstractGroup<Multiplicative> for f32
impl AbstractGroup<Multiplicative> for f64
impl<N> AbstractGroupAbelian<Multiplicative> for Complex<N>
impl<N> AbstractLoop<Multiplicative> for Complex<N>
impl AbstractLoop<Multiplicative> for f32
impl AbstractLoop<Multiplicative> for f64
impl<N> AbstractMonoid<Multiplicative> for Complex<N>
impl<N> AbstractQuasigroup<Multiplicative> for Complex<N>
impl<N> AbstractSemigroup<Multiplicative> for Complex<N>
impl Copy for Multiplicative
Auto Trait Implementations§
impl Freeze for Multiplicative
impl RefUnwindSafe for Multiplicative
impl Send for Multiplicative
impl Sync for Multiplicative
impl Unpin for Multiplicative
impl UnwindSafe for Multiplicative
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§unsafe fn to_subset_unchecked(&self) -> SS
unsafe fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.