Expand description
Mathematical constants.
The constants have the maximum precision possible for a fixed-point number, and are rounded down at that precision.
§Examples
use fixed::{consts, types::I4F28};
let tau = I4F28::from_num(consts::TAU);
println!("τ = 2π with eight binary places is {tau:.8b}");
assert_eq!(format!("{tau:.8b}"), "110.01001000");
println!("τ = 2π with eight decimal places is {tau:.8}");
assert_eq!(format!("{tau:.8}"), "6.28318531");
Constants§
- Catalan’s constant = 0.915965…
- Euler’s number, e = 2.71828…
- The golden ratio conjugate, Φ = 1/φ = 0.618033…
- 1/π = 0.318309…
- 1/√2 = 0.707106…
- 1/√3 = 0.577350…
- 1/√π = 0.564189…
- 1/τ = 0.159154…
- 2/π = 0.636619…
- 2/√π = 1.12837…
- 2/τ = 0.318309…
- 4/τ = 0.636619…
- π/2 = 1.57079…
- π/3 = 1.04719…
- π/4 = 0.785398…
- π/6 = 0.523598…
- π/8 = 0.392699…
- τ/2 = 3.14159…
- τ/3 = 2.09439…
- τ/4 = 1.57079…
- τ/6 = 1.04719…
- τ/8 = 0.785398…
- τ/12 = 0.523598…
- The Euler-Mascheroni constant, γ = 0.577215…
- ln 2 = 0.693147…
- ln 10 = 2.30258…
- log2 10 = 3.32192…
- log2 e = 1.44269…
- log10 2 = 0.301029…
- log10 e = 0.434294…
- The golden ratio, φ = 1.61803…
- Archimedes’ constant, π = 3.14159…
- √2 = 1.41421…
- √3 = 1.73205…
- √e = 1.64872…
- √φ = 1.27201…
- √π = 1.77245…
- A turn, τ = 6.28318…