Struct nalgebra::geometry::DualQuaternion

source ·
#[repr(C)]
pub struct DualQuaternion<T> { pub real: Quaternion<T>, pub dual: Quaternion<T>, }
Expand description

A dual quaternion.

§Indexing

DualQuaternions are stored as [..real, ..dual]. Both of the quaternion components are laid out in i, j, k, w order.

§Example


let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);

let dq = DualQuaternion::from_real_and_dual(real, dual);
assert_eq!(dq[0], 2.0);
assert_eq!(dq[1], 3.0);

assert_eq!(dq[4], 6.0);
assert_eq!(dq[7], 5.0);

NOTE: As of December 2020, dual quaternion support is a work in progress. If a feature that you need is missing, feel free to open an issue or a PR. See https://github.com/dimforge/nalgebra/issues/487

Fields§

§real: Quaternion<T>

The real component of the quaternion

§dual: Quaternion<T>

The dual component of the quaternion

Implementations§

source§

impl<T: SimdRealField> DualQuaternion<T>

source

pub fn normalize(&self) -> Self

Normalizes this quaternion.

§Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);

let dq_normalized = dq.normalize();

relative_eq!(dq_normalized.real.norm(), 1.0);
source

pub fn normalize_mut(&mut self) -> T

Normalizes this quaternion.

§Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let mut dq = DualQuaternion::from_real_and_dual(real, dual);

dq.normalize_mut();

relative_eq!(dq.real.norm(), 1.0);
source

pub fn conjugate(&self) -> Self

The conjugate of this dual quaternion, containing the conjugate of the real and imaginary parts..

§Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);

let conj = dq.conjugate();
assert!(conj.real.i == -2.0 && conj.real.j == -3.0 && conj.real.k == -4.0);
assert!(conj.real.w == 1.0);
assert!(conj.dual.i == -6.0 && conj.dual.j == -7.0 && conj.dual.k == -8.0);
assert!(conj.dual.w == 5.0);
source

pub fn conjugate_mut(&mut self)

Replaces this quaternion by its conjugate.

§Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let mut dq = DualQuaternion::from_real_and_dual(real, dual);

dq.conjugate_mut();
assert!(dq.real.i == -2.0 && dq.real.j == -3.0 && dq.real.k == -4.0);
assert!(dq.real.w == 1.0);
assert!(dq.dual.i == -6.0 && dq.dual.j == -7.0 && dq.dual.k == -8.0);
assert!(dq.dual.w == 5.0);
source

pub fn try_inverse(&self) -> Option<Self>
where T: RealField,

Inverts this dual quaternion if it is not zero.

§Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let inverse = dq.try_inverse();

assert!(inverse.is_some());
assert_relative_eq!(inverse.unwrap() * dq, DualQuaternion::identity());

//Non-invertible case
let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let dq = DualQuaternion::from_real_and_dual(zero, zero);
let inverse = dq.try_inverse();

assert!(inverse.is_none());
source

pub fn try_inverse_mut(&mut self) -> bool
where T: RealField,

Inverts this dual quaternion in-place if it is not zero.

§Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let mut dq_inverse = dq;
dq_inverse.try_inverse_mut();

assert_relative_eq!(dq_inverse * dq, DualQuaternion::identity());

//Non-invertible case
let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let mut dq = DualQuaternion::from_real_and_dual(zero, zero);
assert!(!dq.try_inverse_mut());
source

pub fn lerp(&self, other: &Self, t: T) -> Self

Linear interpolation between two dual quaternions.

Computes self * (1 - t) + other * t.

§Example
let dq1 = DualQuaternion::from_real_and_dual(
    Quaternion::new(1.0, 0.0, 0.0, 4.0),
    Quaternion::new(0.0, 2.0, 0.0, 0.0)
);
let dq2 = DualQuaternion::from_real_and_dual(
    Quaternion::new(2.0, 0.0, 1.0, 0.0),
    Quaternion::new(0.0, 2.0, 0.0, 0.0)
);
assert_eq!(dq1.lerp(&dq2, 0.25), DualQuaternion::from_real_and_dual(
    Quaternion::new(1.25, 0.0, 0.25, 3.0),
    Quaternion::new(0.0, 2.0, 0.0, 0.0)
));
source§

impl<T: Scalar> DualQuaternion<T>

source

pub fn from_real_and_dual(real: Quaternion<T>, dual: Quaternion<T>) -> Self

Creates a dual quaternion from its rotation and translation components.

§Example
let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);

let dq = DualQuaternion::from_real_and_dual(rot, trans);
assert_eq!(dq.real.w, 1.0);
source

pub fn identity() -> Self
where T: SimdRealField,

The dual quaternion multiplicative identity.

§Example

let dq1 = DualQuaternion::identity();
let dq2 = DualQuaternion::from_real_and_dual(
    Quaternion::new(1.,2.,3.,4.),
    Quaternion::new(5.,6.,7.,8.)
);

assert_eq!(dq1 * dq2, dq2);
assert_eq!(dq2 * dq1, dq2);
source

pub fn cast<To: Scalar>(self) -> DualQuaternion<To>
where DualQuaternion<To>: SupersetOf<Self>,

Cast the components of self to another type.

§Example
let q = DualQuaternion::from_real(Quaternion::new(1.0f64, 2.0, 3.0, 4.0));
let q2 = q.cast::<f32>();
assert_eq!(q2, DualQuaternion::from_real(Quaternion::new(1.0f32, 2.0, 3.0, 4.0)));
source§

impl<T: SimdRealField> DualQuaternion<T>

source

pub fn from_real(real: Quaternion<T>) -> Self

Creates a dual quaternion from only its real part, with no translation component.

§Example
let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);

let dq = DualQuaternion::from_real(rot);
assert_eq!(dq.real.w, 1.0);
assert_eq!(dq.dual.w, 0.0);

Trait Implementations§

source§

impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for DualQuaternion<T>

§

type Epsilon = T

Used for specifying relative comparisons.
source§

fn default_epsilon() -> Self::Epsilon

The default tolerance to use when testing values that are close together. Read more
source§

fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool

A test for equality that uses the absolute difference to compute the approximate equality of two numbers.
source§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of AbsDiffEq::abs_diff_eq.
source§

impl<'a, 'b, T: SimdRealField> Add<&'b DualQuaternion<T>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the + operation. Read more
source§

impl<'b, T: SimdRealField> Add<&'b DualQuaternion<T>> for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the + operator.
source§

fn add(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the + operation. Read more
source§

impl<'a, T: SimdRealField> Add<DualQuaternion<T>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the + operator.
source§

fn add(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the + operation. Read more
source§

impl<T: SimdRealField> Add for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the + operator.
source§

fn add(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the + operation. Read more
source§

impl<'b, T: SimdRealField> AddAssign<&'b DualQuaternion<T>> for DualQuaternion<T>

source§

fn add_assign(&mut self, rhs: &'b DualQuaternion<T>)

Performs the += operation. Read more
source§

impl<T: SimdRealField> AddAssign for DualQuaternion<T>

source§

fn add_assign(&mut self, rhs: DualQuaternion<T>)

Performs the += operation. Read more
source§

impl<T: SimdRealField> AsMut<[T; 8]> for DualQuaternion<T>

source§

fn as_mut(&mut self) -> &mut [T; 8]

Converts this type into a mutable reference of the (usually inferred) input type.
source§

impl<T: SimdRealField> AsRef<[T; 8]> for DualQuaternion<T>

source§

fn as_ref(&self) -> &[T; 8]

Converts this type into a shared reference of the (usually inferred) input type.
source§

impl<T: Clone> Clone for DualQuaternion<T>

source§

fn clone(&self) -> DualQuaternion<T>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug> Debug for DualQuaternion<T>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T: Scalar + Zero> Default for DualQuaternion<T>

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<'a, T> Deserialize<'a> for DualQuaternion<T>
where T: Deserialize<'a> + SimdRealField,

source§

fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where Des: Deserializer<'a>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<T> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div(self, n: T) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<T> for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div(self, n: T) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitDualQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitDualQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> DivAssign<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T>

source§

fn div_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> DivAssign<T> for DualQuaternion<T>

source§

fn div_assign(&mut self, n: T)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> DivAssign<Unit<DualQuaternion<T>>> for DualQuaternion<T>

source§

fn div_assign(&mut self, rhs: UnitDualQuaternion<T>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> Index<usize> for DualQuaternion<T>

§

type Output = T

The returned type after indexing.
source§

fn index(&self, i: usize) -> &Self::Output

Performs the indexing (container[index]) operation. Read more
source§

impl<T: SimdRealField> IndexMut<usize> for DualQuaternion<T>

source§

fn index_mut(&mut self, i: usize) -> &mut T

Performs the mutable indexing (container[index]) operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for &'a UnitDualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for UnitDualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b> Mul<&'b DualQuaternion<f32>> for f32

§

type Output = DualQuaternion<f32>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b DualQuaternion<f32>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b> Mul<&'b DualQuaternion<f64>> for f64

§

type Output = DualQuaternion<f64>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b DualQuaternion<f64>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<DualQuaternion<T>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<DualQuaternion<T>> for &'a UnitDualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<DualQuaternion<T>> for UnitDualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl Mul<DualQuaternion<f32>> for f32

§

type Output = DualQuaternion<f32>

The resulting type after applying the * operator.
source§

fn mul(self, right: DualQuaternion<f32>) -> Self::Output

Performs the * operation. Read more
source§

impl Mul<DualQuaternion<f64>> for f64

§

type Output = DualQuaternion<f64>

The resulting type after applying the * operator.
source§

fn mul(self, right: DualQuaternion<f64>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<T> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, n: T) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<T> for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, n: T) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitDualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitDualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> MulAssign<&'b DualQuaternion<T>> for DualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: &'b DualQuaternion<T>)

Performs the *= operation. Read more
source§

impl<'b, T: SimdRealField> MulAssign<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign<T> for DualQuaternion<T>

source§

fn mul_assign(&mut self, n: T)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign<Unit<DualQuaternion<T>>> for DualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: UnitDualQuaternion<T>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign for DualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: DualQuaternion<T>)

Performs the *= operation. Read more
source§

impl<'a, T: SimdRealField> Neg for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn neg(self) -> Self::Output

Performs the unary - operation. Read more
source§

impl<T: SimdRealField> Neg for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn neg(self) -> Self::Output

Performs the unary - operation. Read more
source§

impl<T: SimdRealField> Normed for DualQuaternion<T>

§

type Norm = <T as SimdComplexField>::SimdRealField

The type of the norm.
source§

fn norm(&self) -> T::SimdRealField

Computes the norm.
source§

fn norm_squared(&self) -> T::SimdRealField

Computes the squared norm.
source§

fn scale_mut(&mut self, n: Self::Norm)

Multiply self by n.
source§

fn unscale_mut(&mut self, n: Self::Norm)

Divides self by n.
source§

impl<T: SimdRealField> One for DualQuaternion<T>

source§

fn one() -> Self

Returns the multiplicative identity element of Self, 1. Read more
source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
source§

fn is_one(&self) -> bool
where Self: PartialEq,

Returns true if self is equal to the multiplicative identity. Read more
source§

impl<T: Scalar> PartialEq for DualQuaternion<T>

source§

fn eq(&self, right: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for DualQuaternion<T>

source§

fn default_max_relative() -> Self::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
source§

fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

A test for equality that uses a relative comparison if the values are far apart.
source§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

The inverse of RelativeEq::relative_eq.
source§

impl<T> Serialize for DualQuaternion<T>

source§

fn serialize<S>( &self, serializer: S ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl<'a, 'b, T: SimdRealField> Sub<&'b DualQuaternion<T>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the - operation. Read more
source§

impl<'b, T: SimdRealField> Sub<&'b DualQuaternion<T>> for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the - operation. Read more
source§

impl<'a, T: SimdRealField> Sub<DualQuaternion<T>> for &'a DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the - operation. Read more
source§

impl<T: SimdRealField> Sub for DualQuaternion<T>

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn sub(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the - operation. Read more
source§

impl<'b, T: SimdRealField> SubAssign<&'b DualQuaternion<T>> for DualQuaternion<T>

source§

fn sub_assign(&mut self, rhs: &'b DualQuaternion<T>)

Performs the -= operation. Read more
source§

impl<T: SimdRealField> SubAssign for DualQuaternion<T>

source§

fn sub_assign(&mut self, rhs: DualQuaternion<T>)

Performs the -= operation. Read more
source§

impl<T1, T2> SubsetOf<DualQuaternion<T2>> for DualQuaternion<T1>
where T1: SimdRealField, T2: SimdRealField + SupersetOf<T1>,

source§

fn to_superset(&self) -> DualQuaternion<T2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(dq: &DualQuaternion<T2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(dq: &DualQuaternion<T2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for DualQuaternion<T>

source§

fn default_max_ulps() -> u32

The default ULPs to tolerate when testing values that are far-apart. Read more
source§

fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool

A test for equality that uses units in the last place (ULP) if the values are far apart.
source§

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of UlpsEq::ulps_eq.
source§

impl<T: SimdRealField> Zero for DualQuaternion<T>

source§

fn zero() -> Self

Returns the additive identity element of Self, 0. Read more
source§

fn is_zero(&self) -> bool

Returns true if self is equal to the additive identity.
source§

fn set_zero(&mut self)

Sets self to the additive identity element of Self, 0.
source§

impl<T: Copy> Copy for DualQuaternion<T>

source§

impl<T: Scalar + Eq> Eq for DualQuaternion<T>

Auto Trait Implementations§

§

impl<T> Freeze for DualQuaternion<T>
where T: Freeze,

§

impl<T> RefUnwindSafe for DualQuaternion<T>
where T: RefUnwindSafe,

§

impl<T> Send for DualQuaternion<T>
where T: Send,

§

impl<T> Sync for DualQuaternion<T>
where T: Sync,

§

impl<T> Unpin for DualQuaternion<T>
where T: Unpin,

§

impl<T> UnwindSafe for DualQuaternion<T>
where T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T, Right> ClosedAdd<Right> for T
where T: Add<Right, Output = T> + AddAssign<Right>,

source§

impl<T, Right> ClosedDiv<Right> for T
where T: Div<Right, Output = T> + DivAssign<Right>,

source§

impl<T, Right> ClosedMul<Right> for T
where T: Mul<Right, Output = T> + MulAssign<Right>,

source§

impl<T> ClosedNeg for T
where T: Neg<Output = T>,

source§

impl<T, Right> ClosedSub<Right> for T
where T: Sub<Right, Output = T> + SubAssign<Right>,

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

source§

impl<T> Scalar for T
where T: 'static + Clone + PartialEq + Debug,