Type Alias nalgebra::geometry::Translation3
source · pub type Translation3<T> = Translation<T, 3>;
Expand description
A 3-dimensional translation.
Aliased Type§
struct Translation3<T> {
pub vector: Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>,
}
Fields§
§vector: Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
The translation coordinates, i.e., how much is added to a point’s coordinates when it is translated.
Implementations
source§impl<T> Translation<T, 3>
impl<T> Translation<T, 3>
source§impl<T: Scalar, const D: usize> Translation<T, D>
impl<T: Scalar, const D: usize> Translation<T, D>
sourcepub fn from_vector(vector: SVector<T, D>) -> Translation<T, D>
👎Deprecated: Use ::from
instead.
pub fn from_vector(vector: SVector<T, D>) -> Translation<T, D>
::from
instead.Creates a new translation from the given vector.
sourcepub fn inverse(&self) -> Translation<T, D>where
T: ClosedNeg,
pub fn inverse(&self) -> Translation<T, D>where
T: ClosedNeg,
Inverts self
.
§Example
let t = Translation3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.inverse(), Translation3::identity());
assert_eq!(t.inverse() * t, Translation3::identity());
// Work in all dimensions.
let t = Translation2::new(1.0, 2.0);
assert_eq!(t * t.inverse(), Translation2::identity());
assert_eq!(t.inverse() * t, Translation2::identity());
sourcepub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
T: Zero + One,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
T: Zero + One,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Converts this translation into its equivalent homogeneous transformation matrix.
§Example
let t = Translation3::new(10.0, 20.0, 30.0);
let expected = Matrix4::new(1.0, 0.0, 0.0, 10.0,
0.0, 1.0, 0.0, 20.0,
0.0, 0.0, 1.0, 30.0,
0.0, 0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);
let t = Translation2::new(10.0, 20.0);
let expected = Matrix3::new(1.0, 0.0, 10.0,
0.0, 1.0, 20.0,
0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);
sourcepub fn inverse_mut(&mut self)where
T: ClosedNeg,
pub fn inverse_mut(&mut self)where
T: ClosedNeg,
Inverts self
in-place.
§Example
let t = Translation3::new(1.0, 2.0, 3.0);
let mut inv_t = Translation3::new(1.0, 2.0, 3.0);
inv_t.inverse_mut();
assert_eq!(t * inv_t, Translation3::identity());
assert_eq!(inv_t * t, Translation3::identity());
// Work in all dimensions.
let t = Translation2::new(1.0, 2.0);
let mut inv_t = Translation2::new(1.0, 2.0);
inv_t.inverse_mut();
assert_eq!(t * inv_t, Translation2::identity());
assert_eq!(inv_t * t, Translation2::identity());
source§impl<T: Scalar + ClosedAdd, const D: usize> Translation<T, D>
impl<T: Scalar + ClosedAdd, const D: usize> Translation<T, D>
sourcepub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Translate the given point.
This is the same as the multiplication self * pt
.
§Example
let t = Translation3::new(1.0, 2.0, 3.0);
let transformed_point = t.transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_eq!(transformed_point, Point3::new(5.0, 7.0, 9.0));
source§impl<T: Scalar + ClosedSub, const D: usize> Translation<T, D>
impl<T: Scalar + ClosedSub, const D: usize> Translation<T, D>
sourcepub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Translate the given point by the inverse of this translation.
§Example
let t = Translation3::new(1.0, 2.0, 3.0);
let transformed_point = t.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_eq!(transformed_point, Point3::new(3.0, 3.0, 3.0));
source§impl<T: Scalar, const D: usize> Translation<T, D>
impl<T: Scalar, const D: usize> Translation<T, D>
sourcepub fn identity() -> Translation<T, D>where
T: Zero,
pub fn identity() -> Translation<T, D>where
T: Zero,
Creates a new identity translation.
§Example
let t = Translation2::identity();
let p = Point2::new(1.0, 2.0);
assert_eq!(t * p, p);
// Works in all dimensions.
let t = Translation3::identity();
let p = Point3::new(1.0, 2.0, 3.0);
assert_eq!(t * p, p);
sourcepub fn cast<To: Scalar>(self) -> Translation<To, D>where
Translation<To, D>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> Translation<To, D>where
Translation<To, D>: SupersetOf<Self>,
Cast the components of self
to another type.
§Example
let tra = Translation2::new(1.0f64, 2.0);
let tra2 = tra.cast::<f32>();
assert_eq!(tra2, Translation2::new(1.0f32, 2.0));
Trait Implementations§
source§impl<'a, 'b, T: SimdRealField> Div<&'a Unit<DualQuaternion<T>>> for &'b Translation3<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'a Unit<DualQuaternion<T>>> for &'b Translation3<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
/
operator.source§impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for Translation3<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for Translation3<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
/
operator.source§impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a Translation3<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a Translation3<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
/
operator.source§impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for Translation3<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for Translation3<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
/
operator.source§impl<'a, 'b, T: SimdRealField> Mul<&'a Unit<DualQuaternion<T>>> for &'b Translation3<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'a Unit<DualQuaternion<T>>> for &'b Translation3<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for Translation3<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for Translation3<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
*
operator.source§impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a Translation3<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a Translation3<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
*
operator.source§impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for Translation3<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for Translation3<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
The resulting type after applying the
*
operator.source§impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for Translation3<T1>
impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for Translation3<T1>
source§fn to_superset(&self) -> UnitDualQuaternion<T2>
fn to_superset(&self) -> UnitDualQuaternion<T2>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool
fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self
fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq for Translation<T, D>
impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq for Translation<T, D>
source§fn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
The default tolerance to use when testing values that are close together. Read more
source§fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
A test for equality that uses the absolute difference to compute the approximate
equality of two numbers.
source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of
AbsDiffEq::abs_diff_eq
.source§impl<T: Clone, const D: usize> Clone for Translation<T, D>
impl<T: Clone, const D: usize> Clone for Translation<T, D>
source§fn clone(&self) -> Translation<T, D>
fn clone(&self) -> Translation<T, D>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<T: Scalar> Deref for Translation<T, 3>
impl<T: Scalar> Deref for Translation<T, 3>
source§impl<T: Scalar> DerefMut for Translation<T, 3>
impl<T: Scalar> DerefMut for Translation<T, 3>
source§impl<'a, T: Scalar, const D: usize> Deserialize<'a> for Translation<T, D>
impl<'a, T: Scalar, const D: usize> Deserialize<'a> for Translation<T, D>
source§fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>where
Des: Deserializer<'a>,
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>where
Des: Deserializer<'a>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'b, T, const D: usize> Div<&'b Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedSub,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Div<&'b Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedSub,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
/
operator.source§impl<T, C, const D: usize> Div<Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<T, const D: usize> Div for Translation<T, D>where
T: Scalar + ClosedSub,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Div for Translation<T, D>where
T: Scalar + ClosedSub,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
/
operator.source§impl<'b, T, const D: usize> DivAssign<&'b Translation<T, D>> for Translation<T, D>
impl<'b, T, const D: usize> DivAssign<&'b Translation<T, D>> for Translation<T, D>
source§fn div_assign(&mut self, right: &'b Translation<T, D>)
fn div_assign(&mut self, right: &'b Translation<T, D>)
Performs the
/=
operation. Read moresource§impl<T, const D: usize> DivAssign for Translation<T, D>
impl<T, const D: usize> DivAssign for Translation<T, D>
source§fn div_assign(&mut self, right: Translation<T, D>)
fn div_assign(&mut self, right: Translation<T, D>)
Performs the
/=
operation. Read moresource§impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 16]> for Translation<T, D>
impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 16]> for Translation<T, D>
source§impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 2]> for Translation<T, D>
impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 2]> for Translation<T, D>
source§impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 4]> for Translation<T, D>
impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 4]> for Translation<T, D>
source§impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 8]> for Translation<T, D>
impl<T, const D: usize> From<[Translation<<T as SimdValue>::Element, D>; 8]> for Translation<T, D>
source§impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>>>::Buffer>> for Translation<T, D>
impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>>>::Buffer>> for Translation<T, D>
source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Translation<T, D>
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Translation<T, D>
source§impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Translation<T, D>
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Translation<T, D>
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'b, T, const D: usize> Mul<&'b Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Mul<&'b Translation<T, D>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Translation<T, 3>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Translation<T, 3>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Translation<T, D>
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Translation<T, D>
source§impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Translation<T, D>
impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Translation<T, D>
§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the
*
operator.source§impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Translation<T, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Translation<T, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Translation<T, 3>where
T::Element: SimdRealField,
source§impl<T, const D: usize> Mul for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul for Translation<T, D>where
T: Scalar + ClosedAdd,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
§type Output = Translation<T, D>
type Output = Translation<T, D>
The resulting type after applying the
*
operator.source§impl<'b, T, const D: usize> MulAssign<&'b Translation<T, D>> for Translation<T, D>
impl<'b, T, const D: usize> MulAssign<&'b Translation<T, D>> for Translation<T, D>
source§fn mul_assign(&mut self, right: &'b Translation<T, D>)
fn mul_assign(&mut self, right: &'b Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<T, const D: usize> MulAssign for Translation<T, D>
impl<T, const D: usize> MulAssign for Translation<T, D>
source§fn mul_assign(&mut self, right: Translation<T, D>)
fn mul_assign(&mut self, right: Translation<T, D>)
Performs the
*=
operation. Read moresource§impl<T: Scalar + PartialEq, const D: usize> PartialEq for Translation<T, D>
impl<T: Scalar + PartialEq, const D: usize> PartialEq for Translation<T, D>
source§fn eq(&self, right: &Translation<T, D>) -> bool
fn eq(&self, right: &Translation<T, D>) -> bool
This method tests for
self
and other
values to be equal, and is used
by ==
.source§impl<T: Scalar + RelativeEq, const D: usize> RelativeEq for Translation<T, D>
impl<T: Scalar + RelativeEq, const D: usize> RelativeEq for Translation<T, D>
source§fn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
source§fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
A test for equality that uses a relative comparison if the values are far apart.
source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
The inverse of
RelativeEq::relative_eq
.source§impl<T: Scalar + SimdValue, const D: usize> SimdValue for Translation<T, D>
impl<T: Scalar + SimdValue, const D: usize> SimdValue for Translation<T, D>
§type Element = Translation<<T as SimdValue>::Element, D>
type Element = Translation<<T as SimdValue>::Element, D>
The type of the elements of each lane of this SIMD value.
§type SimdBool = <T as SimdValue>::SimdBool
type SimdBool = <T as SimdValue>::SimdBool
Type of the result of comparing two SIMD values like
self
.source§unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
Extracts the i-th lane of
self
without bound-checking.source§unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
Replaces the i-th lane of
self
by val
without bound-checking.source§impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Translation<T1, D>
impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Translation<T1, D>
source§fn to_superset(&self) -> Isometry<T2, R, D>
fn to_superset(&self) -> Isometry<T2, R, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool
fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self
fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Translation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Translation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(
&self
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
fn to_superset( &self ) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> bool
fn is_in_subset( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
fn from_superset_unchecked( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D>
impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D>
source§fn to_superset(&self) -> Similarity<T2, R, D>
fn to_superset(&self) -> Similarity<T2, R, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, const D: usize> SubsetOf<Translation<T2, D>> for Translation<T1, D>
impl<T1, T2, const D: usize> SubsetOf<Translation<T2, D>> for Translation<T1, D>
source§fn to_superset(&self) -> Translation<T2, D>
fn to_superset(&self) -> Translation<T2, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(rot: &Translation<T2, D>) -> bool
fn is_in_subset(rot: &Translation<T2, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(rot: &Translation<T2, D>) -> Self
fn from_superset_unchecked(rot: &Translation<T2, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.