Struct nalgebra::geometry::Rotation

source ·
#[repr(C)]
pub struct Rotation<T, const D: usize> { /* private fields */ }
Expand description

A rotation matrix.

This is also known as an element of a Special Orthogonal (SO) group. The Rotation type can either represent a 2D or 3D rotation, represented as a matrix. For a rotation based on quaternions, see UnitQuaternion instead.

Note that instead of using the Rotation type in your code directly, you should use one of its aliases: Rotation2, or Rotation3. Though keep in mind that all the documentation of all the methods of these aliases will also appears on this page.

§Construction

§Transformation and composition

Note that transforming vectors and points can be done by multiplication, e.g., rotation * point. Composing an rotation with another transformation can also be done by multiplication or division.

§Conversion

Implementations§

source§

impl<T, const D: usize> Rotation<T, D>

source

pub const fn from_matrix_unchecked(matrix: SMatrix<T, D, D>) -> Self

Creates a new rotation from the given square matrix.

The matrix orthonormality is not checked.

§Example
let mat = Matrix3::new(0.8660254, -0.5,      0.0,
                       0.5,       0.8660254, 0.0,
                       0.0,       0.0,       1.0);
let rot = Rotation3::from_matrix_unchecked(mat);

assert_eq!(*rot.matrix(), mat);


let mat = Matrix2::new(0.8660254, -0.5,
                       0.5,       0.8660254);
let rot = Rotation2::from_matrix_unchecked(mat);

assert_eq!(*rot.matrix(), mat);
source§

impl<T: Scalar, const D: usize> Rotation<T, D>

§Conversion to a matrix

source

pub fn matrix(&self) -> &SMatrix<T, D, D>

A reference to the underlying matrix representation of this rotation.

§Example
let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5,      0.0,
                            0.5,       0.8660254, 0.0,
                            0.0,       0.0,       1.0);
assert_eq!(*rot.matrix(), expected);


let rot = Rotation2::new(f32::consts::FRAC_PI_6);
let expected = Matrix2::new(0.8660254, -0.5,
                            0.5,       0.8660254);
assert_eq!(*rot.matrix(), expected);
source

pub unsafe fn matrix_mut(&mut self) -> &mut SMatrix<T, D, D>

👎Deprecated: Use .matrix_mut_unchecked() instead.

A mutable reference to the underlying matrix representation of this rotation.

source

pub fn matrix_mut_unchecked(&mut self) -> &mut SMatrix<T, D, D>

A mutable reference to the underlying matrix representation of this rotation.

This is suffixed by “_unchecked” because this allows the user to replace the matrix by another one that is non-inversible or non-orthonormal. If one of those properties is broken, subsequent method calls may return bogus results.

source

pub fn into_inner(self) -> SMatrix<T, D, D>

Unwraps the underlying matrix.

§Example
let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let mat = rot.into_inner();
let expected = Matrix3::new(0.8660254, -0.5,      0.0,
                            0.5,       0.8660254, 0.0,
                            0.0,       0.0,       1.0);
assert_eq!(mat, expected);


let rot = Rotation2::new(f32::consts::FRAC_PI_6);
let mat = rot.into_inner();
let expected = Matrix2::new(0.8660254, -0.5,
                            0.5,       0.8660254);
assert_eq!(mat, expected);
source

pub fn unwrap(self) -> SMatrix<T, D, D>

👎Deprecated: use .into_inner() instead

Unwraps the underlying matrix. Deprecated: Use Rotation::into_inner instead.

source

pub fn to_homogeneous( &self ) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>

Converts this rotation into its equivalent homogeneous transformation matrix.

This is the same as self.into().

§Example
let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let expected = Matrix4::new(0.8660254, -0.5,      0.0, 0.0,
                            0.5,       0.8660254, 0.0, 0.0,
                            0.0,       0.0,       1.0, 0.0,
                            0.0,       0.0,       0.0, 1.0);
assert_eq!(rot.to_homogeneous(), expected);


let rot = Rotation2::new(f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5,      0.0,
                            0.5,       0.8660254, 0.0,
                            0.0,       0.0,       1.0);
assert_eq!(rot.to_homogeneous(), expected);
source§

impl<T: Scalar, const D: usize> Rotation<T, D>

§Transposition and inversion

source

pub fn transpose(&self) -> Self

Transposes self.

Same as .inverse() because the inverse of a rotation matrix is its transform.

§Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
let tr_rot = rot.transpose();
assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);

let rot = Rotation2::new(1.2);
let tr_rot = rot.transpose();
assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
source

pub fn inverse(&self) -> Self

Inverts self.

Same as .transpose() because the inverse of a rotation matrix is its transform.

§Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
let inv = rot.inverse();
assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);

let rot = Rotation2::new(1.2);
let inv = rot.inverse();
assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
source

pub fn transpose_mut(&mut self)

Transposes self in-place.

Same as .inverse_mut() because the inverse of a rotation matrix is its transform.

§Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
let mut tr_rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
tr_rot.transpose_mut();

assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);

let rot = Rotation2::new(1.2);
let mut tr_rot = Rotation2::new(1.2);
tr_rot.transpose_mut();

assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
source

pub fn inverse_mut(&mut self)

Inverts self in-place.

Same as .transpose_mut() because the inverse of a rotation matrix is its transform.

§Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
let mut inv = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
inv.inverse_mut();

assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);

let rot = Rotation2::new(1.2);
let mut inv = Rotation2::new(1.2);
inv.inverse_mut();

assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
source§

impl<T: SimdRealField, const D: usize> Rotation<T, D>

§Transformation of a vector or a point

source

pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>

Rotate the given point.

This is the same as the multiplication self * pt.

§Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));

assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
source

pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>

Rotate the given vector.

This is the same as the multiplication self * v.

§Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));

assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
source

pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>

Rotate the given point by the inverse of this rotation. This may be cheaper than inverting the rotation and then transforming the given point.

§Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));

assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
source

pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>

Rotate the given vector by the inverse of this rotation. This may be cheaper than inverting the rotation and then transforming the given vector.

§Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));

assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
source

pub fn inverse_transform_unit_vector( &self, v: &Unit<SVector<T, D>> ) -> Unit<SVector<T, D>>

Rotate the given vector by the inverse of this rotation. This may be cheaper than inverting the rotation and then transforming the given vector.

§Example
let rot = Rotation3::new(Vector3::z() * f32::consts::FRAC_PI_2);
let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());

assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
source§

impl<T, const D: usize> Rotation<T, D>
where T: Scalar + Zero + One,

§Identity

source

pub fn identity() -> Rotation<T, D>

Creates a new square identity rotation of the given dimension.

§Example
let rot1 = Rotation2::identity();
let rot2 = Rotation2::new(std::f32::consts::FRAC_PI_2);

assert_eq!(rot1 * rot2, rot2);
assert_eq!(rot2 * rot1, rot2);

let rot1 = Rotation3::identity();
let rot2 = Rotation3::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_2);

assert_eq!(rot1 * rot2, rot2);
assert_eq!(rot2 * rot1, rot2);
source§

impl<T: Scalar, const D: usize> Rotation<T, D>

source

pub fn cast<To: Scalar>(self) -> Rotation<To, D>
where Rotation<To, D>: SupersetOf<Self>,

Cast the components of self to another type.

§Example
let rot = Rotation2::<f64>::identity();
let rot2 = rot.cast::<f32>();
assert_eq!(rot2, Rotation2::<f32>::identity());
source§

impl<T: SimdRealField> Rotation<T, 2>

§Interpolation

source

pub fn slerp(&self, other: &Self, t: T) -> Self

Spherical linear interpolation between two rotation matrices.

§Examples:

let rot1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
let rot2 = Rotation2::new(-std::f32::consts::PI);

let rot = rot1.slerp(&rot2, 1.0 / 3.0);

assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
source§

impl<T: SimdRealField> Rotation<T, 3>

source

pub fn slerp(&self, other: &Self, t: T) -> Self
where T: RealField,

Spherical linear interpolation between two rotation matrices.

Panics if the angle between both rotations is 180 degrees (in which case the interpolation is not well-defined). Use .try_slerp instead to avoid the panic.

§Examples:

let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);

let q = q1.slerp(&q2, 1.0 / 3.0);

assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
source

pub fn try_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>
where T: RealField,

Computes the spherical linear interpolation between two rotation matrices or returns None if both rotations are approximately 180 degrees apart (in which case the interpolation is not well-defined).

§Arguments
  • self: the first rotation to interpolate from.
  • other: the second rotation to interpolate toward.
  • t: the interpolation parameter. Should be between 0 and 1.
  • epsilon: the value below which the sinus of the angle separating both rotations must be to return None.
source§

impl<T: SimdRealField> Rotation<T, 2>

§Construction from a 2D rotation angle

source

pub fn new(angle: T) -> Self

Builds a 2 dimensional rotation matrix from an angle in radian.

§Example
let rot = Rotation2::new(f32::consts::FRAC_PI_2);

assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
source

pub fn from_scaled_axis<SB: Storage<T, U1>>( axisangle: Vector<T, U1, SB> ) -> Self

Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.

This is generally used in the context of generic programming. Using the ::new(angle) method instead is more common.

source§

impl<T: SimdRealField> Rotation<T, 2>

§Construction from an existing 2D matrix or rotations

source

pub fn from_basis_unchecked(basis: &[Vector2<T>; 2]) -> Self

Builds a rotation from a basis assumed to be orthonormal.

In order to get a valid rotation matrix, the input must be an orthonormal basis, i.e., all vectors are normalized, and the are all orthogonal to each other. These invariants are not checked by this method.

source

pub fn from_matrix(m: &Matrix2<T>) -> Self
where T: RealField,

Builds a rotation matrix by extracting the rotation part of the given transformation m.

This is an iterative method. See .from_matrix_eps to provide mover convergence parameters and starting solution. This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.

source

pub fn from_matrix_eps( m: &Matrix2<T>, eps: T, max_iter: usize, guess: Self ) -> Self
where T: RealField,

Builds a rotation matrix by extracting the rotation part of the given transformation m.

This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.

§Parameters
  • m: the matrix from which the rotational part is to be extracted.
  • eps: the angular errors tolerated between the current rotation and the optimal one.
  • max_iter: the maximum number of iterations. Loops indefinitely until convergence if set to 0.
  • guess: an estimate of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set to Rotation2::identity() if no other guesses come to mind.
source

pub fn rotation_between<SB, SC>( a: &Vector<T, U2, SB>, b: &Vector<T, U2, SC> ) -> Self
where T: RealField, SB: Storage<T, U2>, SC: Storage<T, U2>,

The rotation matrix required to align a and b but with its angle.

This is the rotation R such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive().

§Example
let a = Vector2::new(1.0, 2.0);
let b = Vector2::new(2.0, 1.0);
let rot = Rotation2::rotation_between(&a, &b);
assert_relative_eq!(rot * a, b);
assert_relative_eq!(rot.inverse() * b, a);
source

pub fn scaled_rotation_between<SB, SC>( a: &Vector<T, U2, SB>, b: &Vector<T, U2, SC>, s: T ) -> Self
where T: RealField, SB: Storage<T, U2>, SC: Storage<T, U2>,

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

§Example
let a = Vector2::new(1.0, 2.0);
let b = Vector2::new(2.0, 1.0);
let rot2 = Rotation2::scaled_rotation_between(&a, &b, 0.2);
let rot5 = Rotation2::scaled_rotation_between(&a, &b, 0.5);
assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
source

pub fn rotation_to(&self, other: &Self) -> Self

The rotation matrix needed to make self and other coincide.

The result is such that: self.rotation_to(other) * self == other.

§Example
let rot1 = Rotation2::new(0.1);
let rot2 = Rotation2::new(1.7);
let rot_to = rot1.rotation_to(&rot2);

assert_relative_eq!(rot_to * rot1, rot2);
assert_relative_eq!(rot_to.inverse() * rot2, rot1);
source

pub fn renormalize(&mut self)
where T: RealField,

Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated computations might cause the matrix from progressively not being orthonormal anymore.

source

pub fn powf(&self, n: T) -> Self

Raise the rotation to a given floating power, i.e., returns the rotation with the angle of self multiplied by n.

§Example
let rot = Rotation2::new(0.78);
let pow = rot.powf(2.0);
assert_relative_eq!(pow.angle(), 2.0 * 0.78);
source§

impl<T: SimdRealField> Rotation<T, 2>

§2D angle extraction

source

pub fn angle(&self) -> T

The rotation angle.

§Example
let rot = Rotation2::new(1.78);
assert_relative_eq!(rot.angle(), 1.78);
source

pub fn angle_to(&self, other: &Self) -> T

The rotation angle needed to make self and other coincide.

§Example
let rot1 = Rotation2::new(0.1);
let rot2 = Rotation2::new(1.7);
assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
source

pub fn scaled_axis(&self) -> SVector<T, 1>

The rotation angle returned as a 1-dimensional vector.

This is generally used in the context of generic programming. Using the .angle() method instead is more common.

source§

impl<T: SimdRealField> Rotation<T, 3>

§Construction from a 3D axis and/or angles

source

pub fn new<SB: Storage<T, U3>>(axisangle: Vector<T, U3, SB>) -> Self

Builds a 3 dimensional rotation matrix from an axis and an angle.

§Arguments
  • axisangle - A vector representing the rotation. Its magnitude is the amount of rotation in radian. Its direction is the axis of rotation.
§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let rot = Rotation3::new(axisangle);

assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// A zero vector yields an identity.
assert_eq!(Rotation3::new(Vector3::<f32>::zeros()), Rotation3::identity());
source

pub fn from_scaled_axis<SB: Storage<T, U3>>( axisangle: Vector<T, U3, SB> ) -> Self

Builds a 3D rotation matrix from an axis scaled by the rotation angle.

This is the same as Self::new(axisangle).

§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let rot = Rotation3::new(axisangle);

assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// A zero vector yields an identity.
assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
source

pub fn from_axis_angle<SB>(axis: &Unit<Vector<T, U3, SB>>, angle: T) -> Self
where SB: Storage<T, U3>,

Builds a 3D rotation matrix from an axis and a rotation angle.

§Example
let axis = Vector3::y_axis();
let angle = f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let rot = Rotation3::from_axis_angle(&axis, angle);

assert_eq!(rot.axis().unwrap(), axis);
assert_eq!(rot.angle(), angle);
assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// A zero vector yields an identity.
assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
source

pub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self

Creates a new rotation from Euler angles.

The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.

§Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
source§

impl<T: SimdRealField> Rotation<T, 3>

§Construction from a 3D eye position and target point

source

pub fn face_towards<SB, SC>( dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC> ) -> Self
where SB: Storage<T, U3>, SC: Storage<T, U3>,

Creates a rotation that corresponds to the local frame of an observer standing at the origin and looking toward dir.

It maps the z axis to the direction dir.

§Arguments
  • dir - The look direction, that is, direction the matrix z axis will be aligned with.
  • up - The vertical direction. The only requirement of this parameter is to not be collinear to dir. Non-collinearity is not checked.
§Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();

let rot = Rotation3::face_towards(&dir, &up);
assert_relative_eq!(rot * Vector3::z(), dir.normalize());
source

pub fn new_observer_frames<SB, SC>( dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC> ) -> Self
where SB: Storage<T, U3>, SC: Storage<T, U3>,

👎Deprecated: renamed to face_towards

Deprecated: Use Rotation3::face_towards instead.

source

pub fn look_at_rh<SB, SC>( dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC> ) -> Self
where SB: Storage<T, U3>, SC: Storage<T, U3>,

Builds a right-handed look-at view matrix without translation.

It maps the view direction dir to the negative z axis. This conforms to the common notion of right handed look-at matrix from the computer graphics community.

§Arguments
  • dir - The direction toward which the camera looks.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to dir.
§Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();

let rot = Rotation3::look_at_rh(&dir, &up);
assert_relative_eq!(rot * dir.normalize(), -Vector3::z());
source

pub fn look_at_lh<SB, SC>( dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC> ) -> Self
where SB: Storage<T, U3>, SC: Storage<T, U3>,

Builds a left-handed look-at view matrix without translation.

It maps the view direction dir to the positive z axis. This conforms to the common notion of left handed look-at matrix from the computer graphics community.

§Arguments
  • dir - The direction toward which the camera looks.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to dir.
§Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();

let rot = Rotation3::look_at_lh(&dir, &up);
assert_relative_eq!(rot * dir.normalize(), Vector3::z());
source§

impl<T: SimdRealField> Rotation<T, 3>

§Construction from an existing 3D matrix or rotations

source

pub fn rotation_between<SB, SC>( a: &Vector<T, U3, SB>, b: &Vector<T, U3, SC> ) -> Option<Self>
where T: RealField, SB: Storage<T, U3>, SC: Storage<T, U3>,

The rotation matrix required to align a and b but with its angle.

This is the rotation R such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive().

§Example
let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let rot = Rotation3::rotation_between(&a, &b).unwrap();
assert_relative_eq!(rot * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot.inverse() * b, a, epsilon = 1.0e-6);
source

pub fn scaled_rotation_between<SB, SC>( a: &Vector<T, U3, SB>, b: &Vector<T, U3, SC>, n: T ) -> Option<Self>
where T: RealField, SB: Storage<T, U3>, SC: Storage<T, U3>,

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

§Example
let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let rot2 = Rotation3::scaled_rotation_between(&a, &b, 0.2).unwrap();
let rot5 = Rotation3::scaled_rotation_between(&a, &b, 0.5).unwrap();
assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
source

pub fn rotation_to(&self, other: &Self) -> Self

The rotation matrix needed to make self and other coincide.

The result is such that: self.rotation_to(other) * self == other.

§Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
let rot_to = rot1.rotation_to(&rot2);
assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
source

pub fn powf(&self, n: T) -> Self
where T: RealField,

Raise the rotation to a given floating power, i.e., returns the rotation with the same axis as self and an angle equal to self.angle() multiplied by n.

§Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = Rotation3::from_axis_angle(&axis, angle);
let pow = rot.powf(2.0);
assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
assert_eq!(pow.angle(), 2.4);
source

pub fn from_basis_unchecked(basis: &[Vector3<T>; 3]) -> Self

Builds a rotation from a basis assumed to be orthonormal.

In order to get a valid rotation matrix, the input must be an orthonormal basis, i.e., all vectors are normalized, and the are all orthogonal to each other. These invariants are not checked by this method.

source

pub fn from_matrix(m: &Matrix3<T>) -> Self
where T: RealField,

Builds a rotation matrix by extracting the rotation part of the given transformation m.

This is an iterative method. See .from_matrix_eps to provide mover convergence parameters and starting solution. This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.

source

pub fn from_matrix_eps( m: &Matrix3<T>, eps: T, max_iter: usize, guess: Self ) -> Self
where T: RealField,

Builds a rotation matrix by extracting the rotation part of the given transformation m.

This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.

§Parameters
  • m: the matrix from which the rotational part is to be extracted.
  • eps: the angular errors tolerated between the current rotation and the optimal one.
  • max_iter: the maximum number of iterations. Loops indefinitely until convergence if set to 0.
  • guess: a guess of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set to Rotation3::identity() if no other guesses come to mind.
source

pub fn renormalize(&mut self)
where T: RealField,

Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated computations might cause the matrix from progressively not being orthonormal anymore.

source§

impl<T: SimdRealField> Rotation<T, 3>

§3D axis and angle extraction

source

pub fn angle(&self) -> T

The rotation angle in [0; pi].

§Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = Rotation3::from_axis_angle(&axis, 1.78);
assert_relative_eq!(rot.angle(), 1.78);
source

pub fn axis(&self) -> Option<Unit<Vector3<T>>>
where T: RealField,

The rotation axis. Returns None if the rotation angle is zero or PI.

§Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = Rotation3::from_axis_angle(&axis, angle);
assert_relative_eq!(rot.axis().unwrap(), axis);

// Case with a zero angle.
let rot = Rotation3::from_axis_angle(&axis, 0.0);
assert!(rot.axis().is_none());
source

pub fn scaled_axis(&self) -> Vector3<T>
where T: RealField,

The rotation axis multiplied by the rotation angle.

§Example
let axisangle = Vector3::new(0.1, 0.2, 0.3);
let rot = Rotation3::new(axisangle);
assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
source

pub fn axis_angle(&self) -> Option<(Unit<Vector3<T>>, T)>
where T: RealField,

The rotation axis and angle in (0, pi] of this rotation matrix.

Returns None if the angle is zero.

§Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = Rotation3::from_axis_angle(&axis, angle);
let axis_angle = rot.axis_angle().unwrap();
assert_relative_eq!(axis_angle.0, axis);
assert_relative_eq!(axis_angle.1, angle);

// Case with a zero angle.
let rot = Rotation3::from_axis_angle(&axis, 0.0);
assert!(rot.axis_angle().is_none());
source

pub fn angle_to(&self, other: &Self) -> T

The rotation angle needed to make self and other coincide.

§Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
source

pub fn to_euler_angles(self) -> (T, T, T)
where T: RealField,

👎Deprecated: This is renamed to use .euler_angles().

Creates Euler angles from a rotation.

The angles are produced in the form (roll, pitch, yaw).

source

pub fn euler_angles(&self) -> (T, T, T)
where T: RealField,

Euler angles corresponding to this rotation from a rotation.

The angles are produced in the form (roll, pitch, yaw).

§Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
source

pub fn euler_angles_ordered( &self, seq: [Unit<Vector3<T>>; 3], extrinsic: bool ) -> ([T; 3], bool)
where T: RealField + Copy,

Represent this rotation as Euler angles.

Returns the angles produced in the order provided by seq parameter, along with the observability flag. The Euler axes passed to seq must form an orthonormal basis. If the rotation is gimbal locked, then the observability flag is false.

§Panics

Panics if the Euler axes in seq are not orthonormal.

§Example 1:
use std::f64::consts::PI;
use approx::assert_relative_eq;
use nalgebra::{Matrix3, Rotation3, Unit, Vector3};

// 3-1-2
let n = [
    Unit::new_unchecked(Vector3::new(0.0, 0.0, 1.0)),
    Unit::new_unchecked(Vector3::new(1.0, 0.0, 0.0)),
    Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0)),
];

let r1 = Rotation3::from_axis_angle(&n[2], 20.0 * PI / 180.0);
let r2 = Rotation3::from_axis_angle(&n[1], 30.0 * PI / 180.0);
let r3 = Rotation3::from_axis_angle(&n[0], 45.0 * PI / 180.0);

let d = r3 * r2 * r1;

let (angles, observable) = d.euler_angles_ordered(n, false);
assert!(observable);
assert_relative_eq!(angles[0] * 180.0 / PI, 45.0, epsilon = 1e-12);
assert_relative_eq!(angles[1] * 180.0 / PI, 30.0, epsilon = 1e-12);
assert_relative_eq!(angles[2] * 180.0 / PI, 20.0, epsilon = 1e-12);
§Example 2:
use std::f64::consts::PI;
use approx::assert_relative_eq;
use nalgebra::{Matrix3, Rotation3, Unit, Vector3};

let sqrt_2 = 2.0_f64.sqrt();
let n = [
    Unit::new_unchecked(Vector3::new(1.0 / sqrt_2, 1.0 / sqrt_2, 0.0)),
    Unit::new_unchecked(Vector3::new(1.0 / sqrt_2, -1.0 / sqrt_2, 0.0)),
    Unit::new_unchecked(Vector3::new(0.0, 0.0, 1.0)),
];

let r1 = Rotation3::from_axis_angle(&n[2], 20.0 * PI / 180.0);
let r2 = Rotation3::from_axis_angle(&n[1], 30.0 * PI / 180.0);
let r3 = Rotation3::from_axis_angle(&n[0], 45.0 * PI / 180.0);

let d = r3 * r2 * r1;

let (angles, observable) = d.euler_angles_ordered(n, false);
assert!(observable);
assert_relative_eq!(angles[0] * 180.0 / PI, 45.0, epsilon = 1e-12);
assert_relative_eq!(angles[1] * 180.0 / PI, 30.0, epsilon = 1e-12);
assert_relative_eq!(angles[2] * 180.0 / PI, 20.0, epsilon = 1e-12);

Algorithm based on: Malcolm D. Shuster, F. Landis Markley, “General formula for extraction the Euler angles”, Journal of guidance, control, and dynamics, vol. 29.1, pp. 215-221. 2006, and modified to be able to produce extrinsic rotations.

Trait Implementations§

source§

impl<T, const D: usize> AbsDiffEq for Rotation<T, D>
where T: Scalar + AbsDiffEq, T::Epsilon: Clone,

§

type Epsilon = <T as AbsDiffEq>::Epsilon

Used for specifying relative comparisons.
source§

fn default_epsilon() -> Self::Epsilon

The default tolerance to use when testing values that are close together. Read more
source§

fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool

A test for equality that uses the absolute difference to compute the approximate equality of two numbers.
source§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of AbsDiffEq::abs_diff_eq.
source§

impl<T: SimdRealField, const D: usize> AbstractRotation<T, D> for Rotation<T, D>

source§

fn identity() -> Self

The rotation identity.
source§

fn inverse(&self) -> Self

The rotation inverse.
source§

fn inverse_mut(&mut self)

Change self to its inverse.
source§

fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>

Apply the rotation to the given vector.
source§

fn transform_point(&self, p: &Point<T, D>) -> Point<T, D>

Apply the rotation to the given point.
source§

fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>

Apply the inverse rotation to the given vector.
source§

fn inverse_transform_unit_vector( &self, v: &Unit<SVector<T, D>> ) -> Unit<SVector<T, D>>

Apply the inverse rotation to the given unit vector.
source§

fn inverse_transform_point(&self, p: &Point<T, D>) -> Point<T, D>

Apply the inverse rotation to the given point.
source§

impl<T: Clone, const D: usize> Clone for Rotation<T, D>

source§

fn clone(&self) -> Rotation<T, D>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug, const D: usize> Debug for Rotation<T, D>

source§

fn fmt(&self, formatter: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<T, const D: usize> Default for Rotation<T, D>
where T: Scalar + Zero + One,

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<'a, T: Scalar, const D: usize> Deserialize<'a> for Rotation<T, D>
where Owned<T, Const<D>, Const<D>>: Deserialize<'a>,

source§

fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where Des: Deserializer<'a>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl<T, const D: usize> Display for Rotation<T, D>
where T: RealField + Display,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Isometry<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Isometry<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Rotation<T, 2>> for &'a UnitComplex<T>

§

type Output = Unit<Complex<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, 2>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Rotation<T, 2>> for UnitComplex<T>

§

type Output = Unit<Complex<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, 2>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, 3>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for UnitQuaternion<T>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, 3>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, const D: usize> Div<&'b Rotation<T, D>> for &'a Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

§

type Output = Rotation<T, D>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T, const D: usize> Div<&'b Rotation<T, D>> for Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

§

type Output = Rotation<T, D>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, R1, C1, SA, const D2: usize> Div<&'b Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>, DefaultAllocator: Allocator<T, R1, Const<D2>>, ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,

§

type Output = Matrix<T, R1, Const<D2>, <DefaultAllocator as Allocator<T, R1, Const<D2>>>::Buffer>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Rotation<T, D2>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T, R1, C1, SA, const D2: usize> Div<&'b Rotation<T, D2>> for Matrix<T, R1, C1, SA>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>, DefaultAllocator: Allocator<T, R1, Const<D2>>, ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,

§

type Output = Matrix<T, R1, Const<D2>, <DefaultAllocator as Allocator<T, R1, Const<D2>>>::Buffer>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Rotation<T, D2>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Transform<T, C, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Transform<T, C, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Rotation<T, 2>

§

type Output = Unit<Complex<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitComplex<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Rotation<T, 2>

§

type Output = Unit<Complex<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitComplex<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Rotation<T, 3>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Rotation<T, 3>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: Isometry<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: Isometry<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Rotation<T, 2>> for &'a UnitComplex<T>

§

type Output = Unit<Complex<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, 2>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Rotation<T, 2>> for UnitComplex<T>

§

type Output = Unit<Complex<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, 2>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Rotation<T, 3>> for &'a UnitQuaternion<T>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, 3>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Rotation<T, 3>> for UnitQuaternion<T>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, 3>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T, const D: usize> Div<Rotation<T, D>> for &'a Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

§

type Output = Rotation<T, D>

The resulting type after applying the / operator.
source§

fn div(self, right: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T, C, const D: usize> Div<Rotation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T, C, const D: usize> Div<Rotation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T, R1, C1, SA, const D2: usize> Div<Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>, DefaultAllocator: Allocator<T, R1, Const<D2>>, ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,

§

type Output = Matrix<T, R1, Const<D2>, <DefaultAllocator as Allocator<T, R1, Const<D2>>>::Buffer>

The resulting type after applying the / operator.
source§

fn div(self, right: Rotation<T, D2>) -> Self::Output

Performs the / operation. Read more
source§

impl<T, R1, C1, SA, const D2: usize> Div<Rotation<T, D2>> for Matrix<T, R1, C1, SA>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>, DefaultAllocator: Allocator<T, R1, Const<D2>>, ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,

§

type Output = Matrix<T, R1, Const<D2>, <DefaultAllocator as Allocator<T, R1, Const<D2>>>::Buffer>

The resulting type after applying the / operator.
source§

fn div(self, right: Rotation<T, D2>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Transform<T, C, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T, C, const D: usize> Div<Transform<T, C, D>> for Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Transform<T, C, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Rotation<T, 2>

§

type Output = Unit<Complex<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitComplex<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Unit<Complex<T>>> for Rotation<T, 2>

§

type Output = Unit<Complex<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitComplex<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Rotation<T, 3>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Rotation<T, 3>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T, const D: usize> Div for Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

§

type Output = Rotation<T, D>

The resulting type after applying the / operator.
source§

fn div(self, right: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> DivAssign<&'b Rotation<T, 2>> for UnitComplex<T>

source§

fn div_assign(&mut self, rhs: &'b Rotation<T, 2>)

Performs the /= operation. Read more
source§

impl<'b, T: SimdRealField> DivAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>

source§

fn div_assign(&mut self, rhs: &'b Rotation<T, 3>)

Performs the /= operation. Read more
source§

impl<'b, T, const R1: usize, const C1: usize> DivAssign<&'b Rotation<T, C1>> for SMatrix<T, R1, C1>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

source§

fn div_assign(&mut self, right: &'b Rotation<T, C1>)

Performs the /= operation. Read more
source§

impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>

source§

fn div_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

source§

fn div_assign(&mut self, right: &'b Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>

source§

fn div_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<'b, T, C, const D: usize> DivAssign<&'b Rotation<T, D>> for Transform<T, C, D>

source§

fn div_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<'b, T: SimdRealField> DivAssign<&'b Unit<Complex<T>>> for Rotation<T, 2>

source§

fn div_assign(&mut self, rhs: &'b UnitComplex<T>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> DivAssign<Rotation<T, 2>> for UnitComplex<T>

source§

fn div_assign(&mut self, rhs: Rotation<T, 2>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> DivAssign<Rotation<T, 3>> for UnitQuaternion<T>

source§

fn div_assign(&mut self, rhs: Rotation<T, 3>)

Performs the /= operation. Read more
source§

impl<T, const R1: usize, const C1: usize> DivAssign<Rotation<T, C1>> for SMatrix<T, R1, C1>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

source§

fn div_assign(&mut self, right: Rotation<T, C1>)

Performs the /= operation. Read more
source§

impl<T, const D: usize> DivAssign<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>

source§

fn div_assign(&mut self, rhs: Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<T, const D: usize> DivAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>

source§

fn div_assign(&mut self, rhs: Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<T, C, const D: usize> DivAssign<Rotation<T, D>> for Transform<T, C, D>

source§

fn div_assign(&mut self, rhs: Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> DivAssign<Unit<Complex<T>>> for Rotation<T, 2>

source§

fn div_assign(&mut self, rhs: UnitComplex<T>)

Performs the /= operation. Read more
source§

impl<T, const D: usize> DivAssign for Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

source§

fn div_assign(&mut self, right: Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<T, const D: usize> From<[Rotation<<T as SimdValue>::Element, D>; 16]> for Rotation<T, D>

source§

fn from(arr: [Rotation<T::Element, D>; 16]) -> Self

Converts to this type from the input type.
source§

impl<T, const D: usize> From<[Rotation<<T as SimdValue>::Element, D>; 2]> for Rotation<T, D>

source§

fn from(arr: [Rotation<T::Element, D>; 2]) -> Self

Converts to this type from the input type.
source§

impl<T, const D: usize> From<[Rotation<<T as SimdValue>::Element, D>; 4]> for Rotation<T, D>

source§

fn from(arr: [Rotation<T::Element, D>; 4]) -> Self

Converts to this type from the input type.
source§

impl<T, const D: usize> From<[Rotation<<T as SimdValue>::Element, D>; 8]> for Rotation<T, D>

source§

fn from(arr: [Rotation<T::Element, D>; 8]) -> Self

Converts to this type from the input type.
source§

impl<T: RealField> From<Rotation<T, 2>> for Matrix2<T>

source§

fn from(q: Rotation2<T>) -> Self

Converts to this type from the input type.
source§

impl<T: RealField> From<Rotation<T, 2>> for Matrix3<T>

source§

fn from(q: Rotation2<T>) -> Self

Converts to this type from the input type.
source§

impl<T: SimdRealField> From<Rotation<T, 2>> for UnitComplex<T>

source§

fn from(q: Rotation2<T>) -> Self

Converts to this type from the input type.
source§

impl<T: RealField> From<Rotation<T, 3>> for Matrix3<T>

source§

fn from(q: Rotation3<T>) -> Self

Converts to this type from the input type.
source§

impl<T: RealField> From<Rotation<T, 3>> for Matrix4<T>

source§

fn from(q: Rotation3<T>) -> Self

Converts to this type from the input type.
source§

impl<T: SimdRealField> From<Rotation<T, 3>> for UnitQuaternion<T>

source§

fn from(q: Rotation3<T>) -> Self

Converts to this type from the input type.
source§

impl<T: Scalar + Hash, const D: usize> Hash for Rotation<T, D>
where <DefaultAllocator as Allocator<T, Const<D>, Const<D>>>::Buffer: Hash,

source§

fn hash<H: Hasher>(&self, state: &mut H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<T: Scalar, const D: usize> Index<(usize, usize)> for Rotation<T, D>

§

type Output = T

The returned type after indexing.
source§

fn index(&self, row_col: (usize, usize)) -> &T

Performs the indexing (container[index]) operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Isometry<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Isometry<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, R2, C2, SB, const D1: usize> Mul<&'b Matrix<T, R2, C2, SB>> for &'a Rotation<T, D1>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R2: Dim, C2: Dim, SB: Storage<T, R2, C2>, DefaultAllocator: Allocator<T, Const<D1>, C2>, ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,

§

type Output = Matrix<T, Const<D1>, C2, <DefaultAllocator as Allocator<T, Const<D1>, C2>>::Buffer>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Matrix<T, R2, C2, SB>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, R2, C2, SB, const D1: usize> Mul<&'b Matrix<T, R2, C2, SB>> for Rotation<T, D1>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R2: Dim, C2: Dim, SB: Storage<T, R2, C2>, DefaultAllocator: Allocator<T, Const<D1>, C2>, ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,

§

type Output = Matrix<T, Const<D1>, C2, <DefaultAllocator as Allocator<T, Const<D1>, C2>>::Buffer>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Matrix<T, R2, C2, SB>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Rotation<T, D>

§

type Output = OPoint<T, Const<D>>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Rotation<T, D>

§

type Output = OPoint<T, Const<D>>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Rotation<T, 2>> for &'a UnitComplex<T>

§

type Output = Unit<Complex<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, 2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Rotation<T, 2>> for UnitComplex<T>

§

type Output = Unit<Complex<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, 2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, 3>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for UnitQuaternion<T>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, 3>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, const D: usize> Mul<&'b Rotation<T, D>> for &'a Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

§

type Output = Rotation<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Translation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, const D: usize> Mul<&'b Rotation<T, D>> for Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

§

type Output = Rotation<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Translation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, R1, C1, SA, const D2: usize> Mul<&'b Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>, DefaultAllocator: Allocator<T, R1, Const<D2>>, ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,

§

type Output = Matrix<T, R1, Const<D2>, <DefaultAllocator as Allocator<T, R1, Const<D2>>>::Buffer>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Rotation<T, D2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, R1, C1, SA, const D2: usize> Mul<&'b Rotation<T, D2>> for Matrix<T, R1, C1, SA>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>, DefaultAllocator: Allocator<T, R1, Const<D2>>, ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,

§

type Output = Matrix<T, R1, Const<D2>, <DefaultAllocator as Allocator<T, R1, Const<D2>>>::Buffer>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Rotation<T, D2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Transform<T, C, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Transform<T, C, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for &'a Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Translation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Translation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Rotation<T, 2>

§

type Output = Unit<Complex<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Rotation<T, 2>

§

type Output = Unit<Complex<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, S, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1>, S>>> for &'a Rotation<T, D>

§

type Output = Unit<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Unit<Vector<T, Const<D>, S>>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, S, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1>, S>>> for Rotation<T, D>

§

type Output = Unit<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Unit<Vector<T, Const<D>, S>>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Rotation<T, 3>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Rotation<T, 3>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Isometry<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Isometry<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, R2, C2, SB, const D1: usize> Mul<Matrix<T, R2, C2, SB>> for &'a Rotation<T, D1>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R2: Dim, C2: Dim, SB: Storage<T, R2, C2>, DefaultAllocator: Allocator<T, Const<D1>, C2>, ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,

§

type Output = Matrix<T, Const<D1>, C2, <DefaultAllocator as Allocator<T, Const<D1>, C2>>::Buffer>

The resulting type after applying the * operator.
source§

fn mul(self, right: Matrix<T, R2, C2, SB>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, R2, C2, SB, const D1: usize> Mul<Matrix<T, R2, C2, SB>> for Rotation<T, D1>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R2: Dim, C2: Dim, SB: Storage<T, R2, C2>, DefaultAllocator: Allocator<T, Const<D1>, C2>, ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,

§

type Output = Matrix<T, Const<D1>, C2, <DefaultAllocator as Allocator<T, Const<D1>, C2>>::Buffer>

The resulting type after applying the * operator.
source§

fn mul(self, right: Matrix<T, R2, C2, SB>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Rotation<T, D>

§

type Output = OPoint<T, Const<D>>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Rotation<T, D>

§

type Output = OPoint<T, Const<D>>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Rotation<T, 2>> for &'a UnitComplex<T>

§

type Output = Unit<Complex<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, 2>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Rotation<T, 2>> for UnitComplex<T>

§

type Output = Unit<Complex<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, 2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Rotation<T, 3>> for &'a UnitQuaternion<T>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, 3>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Rotation<T, 3>> for UnitQuaternion<T>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, 3>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, const D: usize> Mul<Rotation<T, D>> for &'a Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

§

type Output = Rotation<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, C, const D: usize> Mul<Rotation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Translation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, C, const D: usize> Mul<Rotation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Translation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, R1, C1, SA, const D2: usize> Mul<Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>, DefaultAllocator: Allocator<T, R1, Const<D2>>, ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,

§

type Output = Matrix<T, R1, Const<D2>, <DefaultAllocator as Allocator<T, R1, Const<D2>>>::Buffer>

The resulting type after applying the * operator.
source§

fn mul(self, right: Rotation<T, D2>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, R1, C1, SA, const D2: usize> Mul<Rotation<T, D2>> for Matrix<T, R1, C1, SA>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>, DefaultAllocator: Allocator<T, R1, Const<D2>>, ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,

§

type Output = Matrix<T, R1, Const<D2>, <DefaultAllocator as Allocator<T, R1, Const<D2>>>::Buffer>

The resulting type after applying the * operator.
source§

fn mul(self, right: Rotation<T, D2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Transform<T, C, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Transform<T, C, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Mul<Translation<T, D>> for &'a Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Translation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, const D: usize> Mul<Translation<T, D>> for Rotation<T, D>

§

type Output = Isometry<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Translation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Rotation<T, 2>

§

type Output = Unit<Complex<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitComplex<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Rotation<T, 2>

§

type Output = Unit<Complex<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitComplex<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, S, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1>, S>>> for &'a Rotation<T, D>

§

type Output = Unit<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>>

The resulting type after applying the * operator.
source§

fn mul(self, right: Unit<Vector<T, Const<D>, S>>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, S, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1>, S>>> for Rotation<T, D>

§

type Output = Unit<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>>

The resulting type after applying the * operator.
source§

fn mul(self, right: Unit<Vector<T, Const<D>, S>>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Rotation<T, 3>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Rotation<T, 3>

§

type Output = Unit<Quaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, const D: usize> Mul for Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

§

type Output = Rotation<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> MulAssign<&'b Rotation<T, 2>> for UnitComplex<T>

source§

fn mul_assign(&mut self, rhs: &'b Rotation<T, 2>)

Performs the *= operation. Read more
source§

impl<'b, T: SimdRealField> MulAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>

source§

fn mul_assign(&mut self, rhs: &'b Rotation<T, 3>)

Performs the *= operation. Read more
source§

impl<'b, T, const R1: usize, const C1: usize> MulAssign<&'b Rotation<T, C1>> for SMatrix<T, R1, C1>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

source§

fn mul_assign(&mut self, right: &'b Rotation<T, C1>)

Performs the *= operation. Read more
source§

impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>

source§

fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

source§

fn mul_assign(&mut self, right: &'b Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>

source§

fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<'b, T, C, const D: usize> MulAssign<&'b Rotation<T, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<'b, T: SimdRealField> MulAssign<&'b Unit<Complex<T>>> for Rotation<T, 2>

source§

fn mul_assign(&mut self, rhs: &'b UnitComplex<T>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign<Rotation<T, 2>> for UnitComplex<T>

source§

fn mul_assign(&mut self, rhs: Rotation<T, 2>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign<Rotation<T, 3>> for UnitQuaternion<T>

source§

fn mul_assign(&mut self, rhs: Rotation<T, 3>)

Performs the *= operation. Read more
source§

impl<T, const R1: usize, const C1: usize> MulAssign<Rotation<T, C1>> for SMatrix<T, R1, C1>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

source§

fn mul_assign(&mut self, right: Rotation<T, C1>)

Performs the *= operation. Read more
source§

impl<T, const D: usize> MulAssign<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>

source§

fn mul_assign(&mut self, rhs: Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<T, const D: usize> MulAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>

source§

fn mul_assign(&mut self, rhs: Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<T, C, const D: usize> MulAssign<Rotation<T, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign<Unit<Complex<T>>> for Rotation<T, 2>

source§

fn mul_assign(&mut self, rhs: UnitComplex<T>)

Performs the *= operation. Read more
source§

impl<T, const D: usize> MulAssign for Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

source§

fn mul_assign(&mut self, right: Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<T, const D: usize> One for Rotation<T, D>
where T: Scalar + Zero + One + ClosedAdd + ClosedMul,

source§

fn one() -> Self

Returns the multiplicative identity element of Self, 1. Read more
source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
source§

fn is_one(&self) -> bool
where Self: PartialEq,

Returns true if self is equal to the multiplicative identity. Read more
source§

impl<T: Scalar + PartialEq, const D: usize> PartialEq for Rotation<T, D>

source§

fn eq(&self, right: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T, const D: usize> RelativeEq for Rotation<T, D>
where T: Scalar + RelativeEq, T::Epsilon: Clone,

source§

fn default_max_relative() -> Self::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
source§

fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

A test for equality that uses a relative comparison if the values are far apart.
source§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

The inverse of RelativeEq::relative_eq.
source§

impl<T: Scalar, const D: usize> Serialize for Rotation<T, D>
where Owned<T, Const<D>, Const<D>>: Serialize,

source§

fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl<T, const D: usize> SimdValue for Rotation<T, D>
where T: Scalar + SimdValue, T::Element: Scalar,

§

type Element = Rotation<<T as SimdValue>::Element, D>

The type of the elements of each lane of this SIMD value.
§

type SimdBool = <T as SimdValue>::SimdBool

Type of the result of comparing two SIMD values like self.
source§

fn lanes() -> usize

The number of lanes of this SIMD value.
source§

fn splat(val: Self::Element) -> Self

Initializes an SIMD value with each lanes set to val.
source§

fn extract(&self, i: usize) -> Self::Element

Extracts the i-th lane of self. Read more
source§

unsafe fn extract_unchecked(&self, i: usize) -> Self::Element

Extracts the i-th lane of self without bound-checking.
source§

fn replace(&mut self, i: usize, val: Self::Element)

Replaces the i-th lane of self by val. Read more
source§

unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)

Replaces the i-th lane of self by val without bound-checking.
source§

fn select(self, cond: Self::SimdBool, other: Self) -> Self

Merges self and other depending on the lanes of cond. Read more
source§

fn map_lanes(self, f: impl Fn(Self::Element) -> Self::Element) -> Self
where Self: Clone,

Applies a function to each lane of self. Read more
source§

fn zip_map_lanes( self, b: Self, f: impl Fn(Self::Element, Self::Element) -> Self::Element ) -> Self
where Self: Clone,

Applies a function to each lane of self paired with the corresponding lane of b. Read more
source§

impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Rotation<T1, D>
where T1: RealField, T2: RealField + SupersetOf<T1>, R: AbstractRotation<T2, D> + SupersetOf<Self>,

source§

fn to_superset(&self) -> Isometry<T2, R, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Rotation<T1, D>

source§

fn to_superset( &self ) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2> SubsetOf<Rotation<T2, 2>> for UnitComplex<T1>
where T1: RealField, T2: RealField + SupersetOf<T1>,

source§

fn to_superset(&self) -> Rotation2<T2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(rot: &Rotation2<T2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(rot: &Rotation2<T2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2> SubsetOf<Rotation<T2, 3>> for UnitQuaternion<T1>
where T1: RealField, T2: RealField + SupersetOf<T1>,

source§

fn to_superset(&self) -> Rotation3<T2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(rot: &Rotation3<T2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(rot: &Rotation3<T2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, const D: usize> SubsetOf<Rotation<T2, D>> for Rotation<T1, D>
where T1: RealField, T2: RealField + SupersetOf<T1>,

source§

fn to_superset(&self) -> Rotation<T2, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(rot: &Rotation<T2, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(rot: &Rotation<T2, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D>
where T1: RealField, T2: RealField + SupersetOf<T1>, R: AbstractRotation<T2, D> + SupersetOf<Self>,

source§

fn to_superset(&self) -> Similarity<T2, R, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D>

source§

fn to_superset(&self) -> Transform<T2, C, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T, const D: usize> UlpsEq for Rotation<T, D>
where T: Scalar + UlpsEq, T::Epsilon: Clone,

source§

fn default_max_ulps() -> u32

The default ULPs to tolerate when testing values that are far-apart. Read more
source§

fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool

A test for equality that uses units in the last place (ULP) if the values are far apart.
source§

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of UlpsEq::ulps_eq.
source§

impl<T: Copy, const D: usize> Copy for Rotation<T, D>

source§

impl<T: Scalar + Eq, const D: usize> Eq for Rotation<T, D>

Auto Trait Implementations§

§

impl<T, const D: usize> Freeze for Rotation<T, D>
where T: Freeze,

§

impl<T, const D: usize> RefUnwindSafe for Rotation<T, D>
where T: RefUnwindSafe,

§

impl<T, const D: usize> Send for Rotation<T, D>
where T: Send,

§

impl<T, const D: usize> Sync for Rotation<T, D>
where T: Sync,

§

impl<T, const D: usize> Unpin for Rotation<T, D>
where T: Unpin,

§

impl<T, const D: usize> UnwindSafe for Rotation<T, D>
where T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T, Right> ClosedDiv<Right> for T
where T: Div<Right, Output = T> + DivAssign<Right>,

source§

impl<T, Right> ClosedMul<Right> for T
where T: Mul<Right, Output = T> + MulAssign<Right>,

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

source§

impl<T> Scalar for T
where T: 'static + Clone + PartialEq + Debug,