1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
//! Kalman filter and Rauch-Tung-Striebel smoothing implementation
//!
//! Characteristics:
//! - Uses the [nalgebra](https://nalgebra.org) crate for math.
//! - Supports `no_std` to facilitate running on embedded microcontrollers.
//! - Includes [various methods of computing the covariance matrix on the update
//! step](enum.CovarianceUpdateMethod.html).
//! - [Examples](https://github.com/strawlab/adskalman-rs/tree/main/examples)
//! included.
//! - Strong typing used to ensure correct matrix dimensions at compile time.
//!
//! Throughout the library, the generic type `SS` means "state size" and `OS` is
//! "observation size". These refer to the number of dimensions of the state
//! vector and observation vector, respectively.
// Ideas for improvement:
// - See http://mocha-java.uccs.edu/ECE5550/, especially
// "5.1: Maintaining symmetry of covariance matrices".
// - See http://www.anuncommonlab.com/articles/how-kalman-filters-work/part2.html
// - See https://stats.stackexchange.com/questions/67262/non-overlapping-state-and-measurement-covariances-in-kalman-filter/292690
// - https://en.wikipedia.org/wiki/Kalman_filter#Square_root_form
#![cfg_attr(not(feature = "std"), no_std)]
#![allow(non_snake_case)]
#[cfg(feature = "std")]
use log::trace;
use na::{OMatrix, OVector};
use nalgebra as na;
use nalgebra::base::dimension::DimMin;
use na::allocator::Allocator;
use na::{DefaultAllocator, DimName, RealField};
use num_traits::identities::One;
// Without std, create a dummy trace!() macro.
#[cfg(not(feature = "std"))]
macro_rules! trace {
($e:expr) => {{}};
($e:expr, $($es:expr),+) => {{}};
}
/// perform a runtime check that matrix is symmetric
///
/// only compiled in debug mode
macro_rules! debug_assert_symmetric {
($mat:expr) => {
#[cfg(debug_assertions)]
{
if approx::relative_ne!($mat, &$mat.transpose(), max_relative = na::convert(1e-5)) {
return Err(ErrorKind::CovarianceNotPositiveSemiDefinite.into());
}
}
};
}
/// convert an nalgebra array to a String
#[cfg(feature = "std")]
macro_rules! pretty_print {
($arr:expr) => {{
let indent = 4;
let prefix = String::from_utf8(vec![b' '; indent]).unwrap();
let mut result_els = vec!["".to_string()];
for i in 0..$arr.nrows() {
let mut row_els = vec![];
for j in 0..$arr.ncols() {
row_els.push(format!("{:12.3}", $arr[(i, j)]));
}
let row_str = row_els.into_iter().collect::<Vec<_>>().join(" ");
let row_str = format!("{}{}", prefix, row_str);
result_els.push(row_str);
}
result_els.into_iter().collect::<Vec<_>>().join("\n")
}};
}
mod error;
pub use error::{Error, ErrorKind};
mod state_and_covariance;
pub use state_and_covariance::StateAndCovariance;
/// A linear model of process dynamics with no control inputs
pub trait TransitionModelLinearNoControl<R, SS>
where
R: RealField,
SS: DimName,
DefaultAllocator: Allocator<R, SS, SS>,
DefaultAllocator: Allocator<R, SS>,
{
/// Get the state transition model, `F`.
fn F(&self) -> &OMatrix<R, SS, SS>;
/// Get the transpose of the state transition model, `FT`.
fn FT(&self) -> &OMatrix<R, SS, SS>;
/// Get the process covariance, `Q`.
fn Q(&self) -> &OMatrix<R, SS, SS>;
/// Predict new state from previous estimate.
fn predict(&self, previous_estimate: &StateAndCovariance<R, SS>) -> StateAndCovariance<R, SS> {
// The prior.
let P = previous_estimate.state();
let F = self.F();
let state = F * P;
let covariance = ((F * previous_estimate.covariance()) * self.FT()) + self.Q();
StateAndCovariance::new(state, covariance)
}
/// Get the state transition model, `F`.
#[deprecated(since = "0.8.0", note = "Please use the F function instead")]
#[inline]
fn transition_model(&self) -> &OMatrix<R, SS, SS> {
self.F()
}
/// Get the transpose of the state transition model, `FT`.
#[deprecated(since = "0.8.0", note = "Please use the FT function instead")]
#[inline]
fn transition_model_transpose(&self) -> &OMatrix<R, SS, SS> {
self.FT()
}
/// Get the transition noise covariance.
#[deprecated(since = "0.8.0", note = "Please use the Q function instead")]
#[inline]
fn transition_noise_covariance(&self) -> &OMatrix<R, SS, SS> {
self.Q()
}
}
/// An observation model, potentially non-linear.
///
/// To use a non-linear observation model, the non-linear model must be
/// linearized (e.g. using the prior state estimate) and use this linearization
/// as the basis for a `ObservationModel` implementation. This would be done
/// every timestep. For an example, see
/// [`nonlinear_observation.rs`](https://github.com/strawlab/adskalman-rs/blob/main/examples/src/bin/nonlinear_observation.rs).
pub trait ObservationModel<R, SS, OS>
where
R: RealField,
SS: DimName,
OS: DimName + DimMin<OS, Output = OS>,
DefaultAllocator: Allocator<R, SS, SS>,
DefaultAllocator: Allocator<R, SS>,
DefaultAllocator: Allocator<R, OS, SS>,
DefaultAllocator: Allocator<R, SS, OS>,
DefaultAllocator: Allocator<R, OS, OS>,
DefaultAllocator: Allocator<R, OS>,
DefaultAllocator: Allocator<(usize, usize), OS>,
{
/// For a given state, predict the observation.
///
/// The default implementation implements a linear observation model, namely
/// `y = Hx` where `y` is the predicted observation, `H` is the observation
/// matrix, and `x` is the state. For a non-linear observation model, any
/// implementation of this trait should provide an implementation of this
/// method.
///
/// If an observation is not possible, this returns NaN values. (This
/// happens, for example, when a non-linear observation model implements
/// this trait and must be evaluated for a state for which no observation is
/// possible.) Observations with NaN values are treated as missing
/// observations.
fn predict_observation(&self, state: &OVector<R, SS>) -> OVector<R, OS> {
self.H() * state
}
/// Get the observation matrix, `H`.
fn H(&self) -> &OMatrix<R, OS, SS>;
/// Get the transpose of the observation matrix, `HT`.
fn HT(&self) -> &OMatrix<R, SS, OS>;
/// Get the observation noise covariance, `R`.
// TODO: ensure this is positive definite?
fn R(&self) -> &OMatrix<R, OS, OS>;
/// Given prior state and observation, estimate the posterior state.
///
/// This is the *update* step in the Kalman filter literature.
fn update(
&self,
prior: &StateAndCovariance<R, SS>,
observation: &OVector<R, OS>,
covariance_method: CovarianceUpdateMethod,
) -> Result<StateAndCovariance<R, SS>, Error> {
let h = self.H();
trace!("h {}", pretty_print!(h));
let p = prior.covariance();
trace!("p {}", pretty_print!(p));
debug_assert_symmetric!(p);
let ht = self.HT();
trace!("ht {}", pretty_print!(ht));
let r = self.R();
trace!("r {}", pretty_print!(r));
// Calculate innovation covariance
//
// Math note: if (h*p*ht) and r are positive definite, s is also
// positive definite. If p is positive definite, then (h*p*ht) is at
// least positive semi-definite. If h is full rank, it is positive
// definite.
let s = (h * p * ht) + r;
trace!("s {}", pretty_print!(s));
// Calculate kalman gain by inverting.
let s_chol = match na::linalg::Cholesky::new(s) {
Some(v) => v,
None => {
// Maybe state covariance is not symmetric or
// for from positive definite? Also, observation
// noise should be positive definite.
return Err(ErrorKind::CovarianceNotPositiveSemiDefinite.into());
}
};
let s_inv: OMatrix<R, OS, OS> = s_chol.inverse();
trace!("s_inv {}", pretty_print!(s_inv));
let k_gain: OMatrix<R, SS, OS> = p * ht * s_inv;
// let k_gain: OMatrix<R,SS,OS> = solve!( (p*ht), s );
trace!("k_gain {}", pretty_print!(k_gain));
let predicted: OVector<R, OS> = self.predict_observation(prior.state());
trace!("predicted {}", pretty_print!(predicted));
trace!("observation {}", pretty_print!(observation));
let innovation: OVector<R, OS> = observation - predicted;
trace!("innovation {}", pretty_print!(innovation));
let state: OVector<R, SS> = prior.state() + &k_gain * innovation;
trace!("state {}", pretty_print!(state));
trace!("self.observation_matrix() {}", pretty_print!(self.H()));
let kh: OMatrix<R, SS, SS> = &k_gain * self.H();
trace!("kh {}", pretty_print!(kh));
let one_minus_kh = OMatrix::<R, SS, SS>::one() - kh;
trace!("one_minus_kh {}", pretty_print!(one_minus_kh));
let covariance: OMatrix<R, SS, SS> = match covariance_method {
CovarianceUpdateMethod::JosephForm => {
// Joseph form of covariance update keeps covariance matrix symmetric.
let left = &one_minus_kh * prior.covariance() * &one_minus_kh.transpose();
let right = &k_gain * r * &k_gain.transpose();
left + right
}
CovarianceUpdateMethod::OptimalKalman => one_minus_kh * prior.covariance(),
CovarianceUpdateMethod::OptimalKalmanForcedSymmetric => {
let covariance1 = one_minus_kh * prior.covariance();
trace!("covariance1 {}", pretty_print!(covariance1));
// Hack to force covariance to be symmetric.
// See https://math.stackexchange.com/q/2335831
covariance1.symmetric_part()
}
};
trace!("covariance {}", pretty_print!(covariance));
debug_assert_symmetric!(covariance);
Ok(StateAndCovariance::new(state, covariance))
}
/// Get the observation matrix, `H`.
#[deprecated(since = "0.8.0", note = "Please use the H function instead")]
#[inline]
fn observation_matrix(&self) -> &OMatrix<R, OS, SS> {
self.H()
}
/// Get the transpose of the observation matrix, `HT`.
#[deprecated(since = "0.8.0", note = "Please use the HT function instead")]
#[inline]
fn observation_matrix_transpose(&self) -> &OMatrix<R, SS, OS> {
self.HT()
}
/// Get the observation noise covariance, `R`.
#[deprecated(since = "0.8.0", note = "Please use the R function instead")]
#[inline]
fn observation_noise_covariance(&self) -> &OMatrix<R, OS, OS> {
self.R()
}
/// For a given state, predict the observation.
///
/// If an observation is not possible, this returns NaN values. (This
/// happens, for example, when a non-linear observation model implements
/// this trait and must be evaluated for a state for which no observation is
/// possible.) Observations with NaN values are treated as missing
/// observations.
#[deprecated(
since = "0.8.0",
note = "Please use the predict_observation function instead"
)]
#[inline]
fn evaluate(&self, state: &OVector<R, SS>) -> OVector<R, OS> {
self.predict_observation(state)
}
}
/// Specifies the approach used for updating the covariance matrix
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum CovarianceUpdateMethod {
/// Assumes optimal Kalman gain.
///
/// Due to numerical errors, covariance matrix may not remain symmetric.
OptimalKalman,
/// Assumes optimal Kalman gain and then forces symmetric covariance matrix.
///
/// With original covariance matrix P, returns covariance as (P + P.T)/2
/// to enforce that the covariance matrix remains symmetric.
OptimalKalmanForcedSymmetric,
/// Joseph form of covariance update keeps covariance matrix symmetric.
JosephForm,
}
/// A Kalman filter with no control inputs, a linear process model and linear
/// observation model
///
/// Note that the structure is cheap to create, storing only references to the
/// state transition model and the observation model. (The system state is
/// passed as an argument to methods like [Self::step].) Given the lifetime
/// bound of this struct, a useful strategy to avoid requiring lifetime
/// annotations is to construct it just before [Self::step] and then dropping it
/// immediately afterward.
pub struct KalmanFilterNoControl<'a, R, SS, OS>
where
R: RealField,
SS: DimName,
OS: DimName,
{
transition_model: &'a dyn TransitionModelLinearNoControl<R, SS>,
observation_matrix: &'a dyn ObservationModel<R, SS, OS>,
}
impl<'a, R, SS, OS> KalmanFilterNoControl<'a, R, SS, OS>
where
R: RealField,
SS: DimName,
OS: DimName + DimMin<OS, Output = OS>,
DefaultAllocator: Allocator<R, SS, SS>,
DefaultAllocator: Allocator<R, SS>,
DefaultAllocator: Allocator<R, OS, SS>,
DefaultAllocator: Allocator<R, SS, OS>,
DefaultAllocator: Allocator<R, OS, OS>,
DefaultAllocator: Allocator<R, OS>,
DefaultAllocator: Allocator<(usize, usize), OS>,
{
/// Initialize a new `KalmanFilterNoControl` struct.
///
/// The first parameter, `transition_model`, specifies the state transition
/// model, including the function `F` and the process covariance `Q`. The
/// second parameter, `observation_matrix`, specifies the observation model,
/// including the measurement function `H` and the measurement covariance
/// `R`.
pub fn new(
transition_model: &'a dyn TransitionModelLinearNoControl<R, SS>,
observation_matrix: &'a dyn ObservationModel<R, SS, OS>,
) -> Self {
Self {
transition_model,
observation_matrix,
}
}
/// Perform Kalman prediction and update steps with default values
///
/// If any component of the observation is NaN (not a number), the
/// observation will not be used but rather the prior will be returned as
/// the posterior without performing the update step.
///
/// This calls the prediction step of the transition model and then, if
/// there is a (non-`nan`) observation, calls the update step of the
/// observation model using the `CovarianceUpdateMethod::JosephForm`
/// covariance update method.
///
/// This is a convenience method that calls
/// [step_with_options](struct.KalmanFilterNoControl.html#method.step_with_options).
pub fn step(
&self,
previous_estimate: &StateAndCovariance<R, SS>,
observation: &OVector<R, OS>,
) -> Result<StateAndCovariance<R, SS>, Error> {
self.step_with_options(
previous_estimate,
observation,
CovarianceUpdateMethod::JosephForm,
)
}
/// Perform Kalman prediction and update steps with default values
///
/// If any component of the observation is NaN (not a number), the
/// observation will not be used but rather the prior will be returned as
/// the posterior without performing the update step.
///
/// This calls the prediction step of the transition model and then, if
/// there is a (non-`nan`) observation, calls the update step of the
/// observation model using the specified covariance update method.
pub fn step_with_options(
&self,
previous_estimate: &StateAndCovariance<R, SS>,
observation: &OVector<R, OS>,
covariance_update_method: CovarianceUpdateMethod,
) -> Result<StateAndCovariance<R, SS>, Error> {
let prior = self.transition_model.predict(previous_estimate);
if observation.iter().any(|x| is_nan(x.clone())) {
Ok(prior)
} else {
self.observation_matrix
.update(&prior, observation, covariance_update_method)
}
}
/// Kalman filter (operates on in-place data without allocating)
///
/// Operates on entire time series (by repeatedly calling
/// [`step`](struct.KalmanFilterNoControl.html#method.step) for each
/// observation) and returns a vector of state estimates. To be
/// mathematically correct, the interval between observations must be the
/// `dt` specified in the motion model.
///
/// If any observation has a NaN component, it is treated as missing.
pub fn filter_inplace(
&self,
initial_estimate: &StateAndCovariance<R, SS>,
observations: &[OVector<R, OS>],
state_estimates: &mut [StateAndCovariance<R, SS>],
) -> Result<(), Error> {
let mut previous_estimate = initial_estimate.clone();
assert!(state_estimates.len() >= observations.len());
for (this_observation, state_estimate) in
observations.iter().zip(state_estimates.iter_mut())
{
let this_estimate = self.step(&previous_estimate, this_observation)?;
*state_estimate = this_estimate.clone();
previous_estimate = this_estimate;
}
Ok(())
}
/// Kalman filter
///
/// This is a convenience function that calls [`filter_inplace`](struct.KalmanFilterNoControl.html#method.filter_inplace).
#[cfg(feature = "std")]
pub fn filter(
&self,
initial_estimate: &StateAndCovariance<R, SS>,
observations: &[OVector<R, OS>],
) -> Result<Vec<StateAndCovariance<R, SS>>, Error> {
let mut state_estimates = Vec::with_capacity(observations.len());
let empty = StateAndCovariance::new(na::zero(), na::OMatrix::<R, SS, SS>::identity());
for _ in 0..observations.len() {
state_estimates.push(empty.clone());
}
self.filter_inplace(initial_estimate, observations, &mut state_estimates)?;
Ok(state_estimates)
}
/// Rauch-Tung-Striebel (RTS) smoother
///
/// Operates on entire time series (by calling
/// [`filter`](struct.KalmanFilterNoControl.html#method.filter) then
/// [`smooth_from_filtered`](struct.KalmanFilterNoControl.html#method.smooth_from_filtered))
/// and returns a vector of state estimates. To be mathematically correct,
/// the interval between observations must be the `dt` specified in the
/// motion model.
/// Operates on entire time series in one shot and returns a vector of state
/// estimates. To be mathematically correct, the interval between
/// observations must be the `dt` specified in the motion model.
///
/// If any observation has a NaN component, it is treated as missing.
#[cfg(feature = "std")]
pub fn smooth(
&self,
initial_estimate: &StateAndCovariance<R, SS>,
observations: &[OVector<R, OS>],
) -> Result<Vec<StateAndCovariance<R, SS>>, Error> {
let forward_results = self.filter(initial_estimate, observations)?;
self.smooth_from_filtered(forward_results)
}
/// Rauch-Tung-Striebel (RTS) smoother using already Kalman filtered estimates
///
/// Operates on entire time series in one shot and returns a vector of state
/// estimates. To be mathematically correct, the interval between
/// observations must be the `dt` specified in the motion model.
#[cfg(feature = "std")]
pub fn smooth_from_filtered(
&self,
mut forward_results: Vec<StateAndCovariance<R, SS>>,
) -> Result<Vec<StateAndCovariance<R, SS>>, Error> {
forward_results.reverse();
let mut smoothed_backwards = Vec::with_capacity(forward_results.len());
let mut smooth_future = forward_results[0].clone();
smoothed_backwards.push(smooth_future.clone());
for filt in forward_results.iter().skip(1) {
smooth_future = self.smooth_step(&smooth_future, filt)?;
smoothed_backwards.push(smooth_future.clone());
}
smoothed_backwards.reverse();
Ok(smoothed_backwards)
}
#[cfg(feature = "std")]
fn smooth_step(
&self,
smooth_future: &StateAndCovariance<R, SS>,
filt: &StateAndCovariance<R, SS>,
) -> Result<StateAndCovariance<R, SS>, Error> {
let prior = self.transition_model.predict(filt);
let v_chol = match na::linalg::Cholesky::new(prior.covariance().clone()) {
Some(v) => v,
None => {
return Err(ErrorKind::CovarianceNotPositiveSemiDefinite.into());
}
};
let inv_prior_covariance: OMatrix<R, SS, SS> = v_chol.inverse();
trace!(
"inv_prior_covariance {}",
pretty_print!(inv_prior_covariance)
);
// J = dot(Vfilt, dot(A.T, inv(Vpred))) # smoother gain matrix
let j = filt.covariance() * (self.transition_model.FT() * inv_prior_covariance);
// xsmooth = xfilt + dot(J, xsmooth_future - xpred)
let residuals = smooth_future.state() - prior.state();
let state = filt.state() + &j * residuals;
// Vsmooth = Vfilt + dot(J, dot(Vsmooth_future - Vpred, J.T))
let covar_residuals = smooth_future.covariance() - prior.covariance();
let covariance = filt.covariance() + &j * (covar_residuals * j.transpose());
Ok(StateAndCovariance::new(state, covariance))
}
}
#[inline]
fn is_nan<R: RealField>(x: R) -> bool {
x.partial_cmp(&R::zero()).is_none()
}
#[test]
fn test_is_nan() {
assert_eq!(is_nan::<f64>(-1.0), false);
assert_eq!(is_nan::<f64>(0.0), false);
assert_eq!(is_nan::<f64>(1.0), false);
assert_eq!(is_nan::<f64>(1.0 / 0.0), false);
assert_eq!(is_nan::<f64>(-1.0 / 0.0), false);
assert_eq!(is_nan::<f64>(std::f64::NAN), true);
assert_eq!(is_nan::<f32>(-1.0), false);
assert_eq!(is_nan::<f32>(0.0), false);
assert_eq!(is_nan::<f32>(1.0), false);
assert_eq!(is_nan::<f32>(1.0 / 0.0), false);
assert_eq!(is_nan::<f32>(-1.0 / 0.0), false);
assert_eq!(is_nan::<f32>(std::f32::NAN), true);
}