1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*
 * This file implements some BLAS operations in such a way that they work
 * even if the first argument (the output parameter) is an uninitialized matrix.
 *
 * Because doing this makes the code harder to read, we only implemented the operations that we
 * know would benefit from this performance-wise, namely, GEMM (which we use for our matrix
 * multiplication code). If we identify other operations like that in the future, we could add
 * them here.
 */

#[cfg(feature = "std")]
use matrixmultiply;
use num::{One, Zero};
use simba::scalar::{ClosedAdd, ClosedMul};
#[cfg(feature = "std")]
use std::mem;

use crate::base::constraint::{
    AreMultipliable, DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint,
};
use crate::base::dimension::{Dim, Dyn, U1};
use crate::base::storage::{RawStorage, RawStorageMut};
use crate::base::uninit::InitStatus;
use crate::base::{Matrix, Scalar, Vector};
use std::any::TypeId;

// # Safety
// The content of `y` must only contain values for which
// `Status::assume_init_mut` is sound.
#[allow(clippy::too_many_arguments)]
unsafe fn array_axcpy<Status, T>(
    _: Status,
    y: &mut [Status::Value],
    a: T,
    x: &[T],
    c: T,
    beta: T,
    stride1: usize,
    stride2: usize,
    len: usize,
) where
    Status: InitStatus<T>,
    T: Scalar + Zero + ClosedAdd + ClosedMul,
{
    for i in 0..len {
        let y = Status::assume_init_mut(y.get_unchecked_mut(i * stride1));
        *y =
            a.clone() * x.get_unchecked(i * stride2).clone() * c.clone() + beta.clone() * y.clone();
    }
}

fn array_axc<Status, T>(
    _: Status,
    y: &mut [Status::Value],
    a: T,
    x: &[T],
    c: T,
    stride1: usize,
    stride2: usize,
    len: usize,
) where
    Status: InitStatus<T>,
    T: Scalar + Zero + ClosedAdd + ClosedMul,
{
    for i in 0..len {
        unsafe {
            Status::init(
                y.get_unchecked_mut(i * stride1),
                a.clone() * x.get_unchecked(i * stride2).clone() * c.clone(),
            );
        }
    }
}

/// Computes `y = a * x * c + b * y`.
///
/// If `b` is zero, `y` is never read from and may be uninitialized.
///
/// # Safety
/// This is UB if b != 0 and any component of `y` is uninitialized.
#[inline(always)]
#[allow(clippy::many_single_char_names)]
pub unsafe fn axcpy_uninit<Status, T, D1: Dim, D2: Dim, SA, SB>(
    status: Status,
    y: &mut Vector<Status::Value, D1, SA>,
    a: T,
    x: &Vector<T, D2, SB>,
    c: T,
    b: T,
) where
    T: Scalar + Zero + ClosedAdd + ClosedMul,
    SA: RawStorageMut<Status::Value, D1>,
    SB: RawStorage<T, D2>,
    ShapeConstraint: DimEq<D1, D2>,
    Status: InitStatus<T>,
{
    assert_eq!(y.nrows(), x.nrows(), "Axcpy: mismatched vector shapes.");

    let rstride1 = y.strides().0;
    let rstride2 = x.strides().0;

    // SAFETY: the conversion to slices is OK because we access the
    //         elements taking the strides into account.
    let y = y.data.as_mut_slice_unchecked();
    let x = x.data.as_slice_unchecked();

    if !b.is_zero() {
        array_axcpy(status, y, a, x, c, b, rstride1, rstride2, x.len());
    } else {
        array_axc(status, y, a, x, c, rstride1, rstride2, x.len());
    }
}

/// Computes `y = alpha * a * x + beta * y`, where `a` is a matrix, `x` a vector, and
/// `alpha, beta` two scalars.
///
/// If `beta` is zero, `y` is never read from and may be uninitialized.
///
/// # Safety
/// This is UB if beta != 0 and any component of `y` is uninitialized.
#[inline(always)]
pub unsafe fn gemv_uninit<Status, T, D1: Dim, R2: Dim, C2: Dim, D3: Dim, SA, SB, SC>(
    status: Status,
    y: &mut Vector<Status::Value, D1, SA>,
    alpha: T,
    a: &Matrix<T, R2, C2, SB>,
    x: &Vector<T, D3, SC>,
    beta: T,
) where
    Status: InitStatus<T>,
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    SA: RawStorageMut<Status::Value, D1>,
    SB: RawStorage<T, R2, C2>,
    SC: RawStorage<T, D3>,
    ShapeConstraint: DimEq<D1, R2> + AreMultipliable<R2, C2, D3, U1>,
{
    let dim1 = y.nrows();
    let (nrows2, ncols2) = a.shape();
    let dim3 = x.nrows();

    assert!(
        ncols2 == dim3 && dim1 == nrows2,
        "Gemv: dimensions mismatch."
    );

    if ncols2 == 0 {
        if beta.is_zero() {
            y.apply(|e| Status::init(e, T::zero()));
        } else {
            // SAFETY: this is UB if y is uninitialized.
            y.apply(|e| *Status::assume_init_mut(e) *= beta.clone());
        }
        return;
    }

    // TODO: avoid bound checks.
    let col2 = a.column(0);
    let val = x.vget_unchecked(0).clone();

    // SAFETY: this is the call that makes this method unsafe: it is UB if Status = Uninit and beta != 0.
    axcpy_uninit(status, y, alpha.clone(), &col2, val, beta);

    for j in 1..ncols2 {
        let col2 = a.column(j);
        let val = x.vget_unchecked(j).clone();

        // SAFETY: safe because y was initialized above.
        axcpy_uninit(status, y, alpha.clone(), &col2, val, T::one());
    }
}

/// Computes `y = alpha * a * b + beta * y`, where `a, b, y` are matrices.
/// `alpha` and `beta` are scalar.
///
/// If `beta` is zero, `y` is never read from and may be uninitialized.
///
/// # Safety
/// This is UB if beta != 0 and any component of `y` is uninitialized.
#[inline(always)]
pub unsafe fn gemm_uninit<
    Status,
    T,
    R1: Dim,
    C1: Dim,
    R2: Dim,
    C2: Dim,
    R3: Dim,
    C3: Dim,
    SA,
    SB,
    SC,
>(
    status: Status,
    y: &mut Matrix<Status::Value, R1, C1, SA>,
    alpha: T,
    a: &Matrix<T, R2, C2, SB>,
    b: &Matrix<T, R3, C3, SC>,
    beta: T,
) where
    Status: InitStatus<T>,
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    SA: RawStorageMut<Status::Value, R1, C1>,
    SB: RawStorage<T, R2, C2>,
    SC: RawStorage<T, R3, C3>,
    ShapeConstraint:
        SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C3> + AreMultipliable<R2, C2, R3, C3>,
{
    let ncols1 = y.ncols();

    #[cfg(feature = "std")]
    {
        // We assume large matrices will be Dyn but small matrices static.
        // We could use matrixmultiply for large statically-sized matrices but the performance
        // threshold to activate it would be different from SMALL_DIM because our code optimizes
        // better for statically-sized matrices.
        if R1::is::<Dyn>()
            || C1::is::<Dyn>()
            || R2::is::<Dyn>()
            || C2::is::<Dyn>()
            || R3::is::<Dyn>()
            || C3::is::<Dyn>()
        {
            // matrixmultiply can be used only if the std feature is available.
            let nrows1 = y.nrows();
            let (nrows2, ncols2) = a.shape();
            let (nrows3, ncols3) = b.shape();

            // Threshold determined empirically.
            const SMALL_DIM: usize = 5;

            if nrows1 > SMALL_DIM && ncols1 > SMALL_DIM && nrows2 > SMALL_DIM && ncols2 > SMALL_DIM
            {
                assert_eq!(
                    ncols2, nrows3,
                    "gemm: dimensions mismatch for multiplication."
                );
                assert_eq!(
                    (nrows1, ncols1),
                    (nrows2, ncols3),
                    "gemm: dimensions mismatch for addition."
                );

                // NOTE: this case should never happen because we enter this
                // codepath only when ncols2 > SMALL_DIM. Though we keep this
                // here just in case if in the future we change the conditions to
                // enter this codepath.
                if ncols2 == 0 {
                    // NOTE: we can't just always multiply by beta
                    // because we documented the guaranty that `self` is
                    // never read if `beta` is zero.
                    if beta.is_zero() {
                        y.apply(|e| Status::init(e, T::zero()));
                    } else {
                        // SAFETY: this is UB if Status = Uninit
                        y.apply(|e| *Status::assume_init_mut(e) *= beta.clone());
                    }
                    return;
                }

                if TypeId::of::<T>() == TypeId::of::<f32>() {
                    let (rsa, csa) = a.strides();
                    let (rsb, csb) = b.strides();
                    let (rsc, csc) = y.strides();

                    matrixmultiply::sgemm(
                        nrows2,
                        ncols2,
                        ncols3,
                        mem::transmute_copy(&alpha),
                        a.data.ptr() as *const f32,
                        rsa as isize,
                        csa as isize,
                        b.data.ptr() as *const f32,
                        rsb as isize,
                        csb as isize,
                        mem::transmute_copy(&beta),
                        y.data.ptr_mut() as *mut f32,
                        rsc as isize,
                        csc as isize,
                    );
                    return;
                } else if TypeId::of::<T>() == TypeId::of::<f64>() {
                    let (rsa, csa) = a.strides();
                    let (rsb, csb) = b.strides();
                    let (rsc, csc) = y.strides();

                    matrixmultiply::dgemm(
                        nrows2,
                        ncols2,
                        ncols3,
                        mem::transmute_copy(&alpha),
                        a.data.ptr() as *const f64,
                        rsa as isize,
                        csa as isize,
                        b.data.ptr() as *const f64,
                        rsb as isize,
                        csb as isize,
                        mem::transmute_copy(&beta),
                        y.data.ptr_mut() as *mut f64,
                        rsc as isize,
                        csc as isize,
                    );
                    return;
                }
            }
        }
    }

    for j1 in 0..ncols1 {
        // TODO: avoid bound checks.
        // SAFETY: this is UB if Status = Uninit && beta != 0
        gemv_uninit(
            status,
            &mut y.column_mut(j1),
            alpha.clone(),
            a,
            &b.column(j1),
            beta.clone(),
        );
    }
}