1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
//! Composable structures to handle reading an image.


use std::convert::TryFrom;
use std::fmt::Debug;
use std::io::{Read, Seek};
use rayon_core::{ThreadPool, ThreadPoolBuildError};

use smallvec::alloc::sync::Arc;

use crate::block::{BlockIndex, UncompressedBlock};
use crate::block::chunk::{Chunk, TileCoordinates};
use crate::compression::Compression;
use crate::error::{Error, Result, u64_to_usize, UnitResult};
use crate::io::{PeekRead, Tracking};
use crate::meta::{MetaData, OffsetTables};
use crate::meta::header::Header;

/// Decode the meta data from a byte source, keeping the source ready for further reading.
/// Continue decoding the remaining bytes by calling `filtered_chunks` or `all_chunks`.
#[derive(Debug)]
pub struct Reader<R> {
    meta_data: MetaData,
    remaining_reader: PeekRead<Tracking<R>>, // TODO does R need to be Seek or is Tracking enough?
}

impl<R: Read + Seek> Reader<R> {

    /// Start the reading process.
    /// Immediately decodes the meta data into an internal field.
    /// Access it via`meta_data()`.
    pub fn read_from_buffered(read: R, pedantic: bool) -> Result<Self> {
        let mut remaining_reader = PeekRead::new(Tracking::new(read));
        let meta_data = MetaData::read_validated_from_buffered_peekable(&mut remaining_reader, pedantic)?;
        Ok(Self { meta_data, remaining_reader })
    }

    // must not be mutable, as reading the file later on relies on the meta data
    /// The decoded exr meta data from the file.
    pub fn meta_data(&self) -> &MetaData { &self.meta_data }

    /// The decoded exr meta data from the file.
    pub fn headers(&self) -> &[Header] { &self.meta_data.headers }

    /// Obtain the meta data ownership.
    pub fn into_meta_data(self) -> MetaData { self.meta_data }

    /// Prepare to read all the chunks from the file.
    /// Does not decode the chunks now, but returns a decoder.
    /// Reading all chunks reduces seeking the file, but some chunks might be read without being used.
    pub fn all_chunks(mut self, pedantic: bool) -> Result<AllChunksReader<R>> {
        let total_chunk_count = {
            if pedantic {
                let offset_tables = MetaData::read_offset_tables(&mut self.remaining_reader, &self.meta_data.headers)?;
                validate_offset_tables(self.meta_data.headers.as_slice(), &offset_tables, self.remaining_reader.byte_position())?;
                offset_tables.iter().map(|table| table.len()).sum()
            }
            else {
                usize::try_from(MetaData::skip_offset_tables(&mut self.remaining_reader, &self.meta_data.headers)?)
                    .expect("too large chunk count for this machine")
            }
        };

        Ok(AllChunksReader {
            meta_data: self.meta_data,
            remaining_chunks: 0 .. total_chunk_count,
            remaining_bytes: self.remaining_reader,
            pedantic
        })
    }

    /// Prepare to read some the chunks from the file.
    /// Does not decode the chunks now, but returns a decoder.
    /// Reading only some chunks may seeking the file, potentially skipping many bytes.
    // TODO tile indices add no new information to block index??
    pub fn filter_chunks(mut self, pedantic: bool, mut filter: impl FnMut(&MetaData, TileCoordinates, BlockIndex) -> bool) -> Result<FilteredChunksReader<R>> {
        let offset_tables = MetaData::read_offset_tables(&mut self.remaining_reader, &self.meta_data.headers)?;

        // TODO regardless of pedantic, if invalid, read all chunks instead, and filter after reading each chunk?
        if pedantic {
            validate_offset_tables(
                self.meta_data.headers.as_slice(), &offset_tables,
                self.remaining_reader.byte_position()
            )?;
        }

        let mut filtered_offsets = Vec::with_capacity(
            (self.meta_data.headers.len() * 32).min(2*2048)
        );

        // TODO detect whether the filter actually would skip chunks, and aviod sorting etc when not filtering is applied

        for (header_index, header) in self.meta_data.headers.iter().enumerate() { // offset tables are stored same order as headers
            for (block_index, tile) in header.blocks_increasing_y_order().enumerate() { // in increasing_y order
                let data_indices = header.get_absolute_block_pixel_coordinates(tile.location)?;

                let block = BlockIndex {
                    layer: header_index,
                    level: tile.location.level_index,
                    pixel_position: data_indices.position.to_usize("data indices start")?,
                    pixel_size: data_indices.size,
                };

                if filter(&self.meta_data, tile.location, block) {
                    filtered_offsets.push(offset_tables[header_index][block_index]) // safe indexing from `enumerate()`
                }
            };
        }

        filtered_offsets.sort_unstable(); // enables reading continuously if possible (already sorted where line order increasing)

        if pedantic {
            // table is sorted. if any two neighbours are equal, we have duplicates. this is invalid.
            if filtered_offsets.windows(2).any(|pair| pair[0] == pair[1]) {
                return Err(Error::invalid("chunk offset table"))
            }
        }

        Ok(FilteredChunksReader {
            meta_data: self.meta_data,
            expected_filtered_chunk_count: filtered_offsets.len(),
            remaining_filtered_chunk_indices: filtered_offsets.into_iter(),
            remaining_bytes: self.remaining_reader
        })
    }
}


fn validate_offset_tables(headers: &[Header], offset_tables: &OffsetTables, chunks_start_byte: usize) -> UnitResult {
    let max_pixel_bytes: usize = headers.iter() // when compressed, chunks are smaller, but never larger than max
        .map(|header| header.max_pixel_file_bytes())
        .sum();

    // check that each offset is within the bounds
    let end_byte = chunks_start_byte + max_pixel_bytes;
    let is_invalid = offset_tables.iter().flatten().map(|&u64| u64_to_usize(u64))
        .any(|chunk_start| chunk_start < chunks_start_byte || chunk_start > end_byte);

    if is_invalid { Err(Error::invalid("offset table")) }
    else { Ok(()) }
}




/// Decode the desired chunks and skip the unimportant chunks in the file.
/// The decoded chunks can be decompressed by calling
/// `decompress_parallel`, `decompress_sequential`, or `sequential_decompressor` or `parallel_decompressor`.
/// Call `on_progress` to have a callback with each block.
/// Also contains the image meta data.
#[derive(Debug)]
pub struct FilteredChunksReader<R> {
    meta_data: MetaData,
    expected_filtered_chunk_count: usize,
    remaining_filtered_chunk_indices: std::vec::IntoIter<u64>,
    remaining_bytes: PeekRead<Tracking<R>>,
}

/// Decode all chunks in the file without seeking.
/// The decoded chunks can be decompressed by calling
/// `decompress_parallel`, `decompress_sequential`, or `sequential_decompressor` or `parallel_decompressor`.
/// Call `on_progress` to have a callback with each block.
/// Also contains the image meta data.
#[derive(Debug)]
pub struct AllChunksReader<R> {
    meta_data: MetaData,
    remaining_chunks: std::ops::Range<usize>,
    remaining_bytes: PeekRead<Tracking<R>>,
    pedantic: bool,
}

/// Decode chunks in the file without seeking.
/// Calls the supplied closure for each chunk.
/// The decoded chunks can be decompressed by calling
/// `decompress_parallel`, `decompress_sequential`, or `sequential_decompressor`.
/// Also contains the image meta data.
#[derive(Debug)]
pub struct OnProgressChunksReader<R, F> {
    chunks_reader: R,
    decoded_chunks: usize,
    callback: F,
}

/// Decode chunks in the file.
/// The decoded chunks can be decompressed by calling
/// `decompress_parallel`, `decompress_sequential`, or `sequential_decompressor`.
/// Call `on_progress` to have a callback with each block.
/// Also contains the image meta data.
pub trait ChunksReader: Sized + Iterator<Item=Result<Chunk>> + ExactSizeIterator {

    /// The decoded exr meta data from the file.
    fn meta_data(&self) -> &MetaData;

    /// The decoded exr headers from the file.
    fn headers(&self) -> &[Header] { &self.meta_data().headers }

    /// The number of chunks that this reader will return in total.
    /// Can be less than the total number of chunks in the file, if some chunks are skipped.
    fn expected_chunk_count(&self) -> usize;

    /// Read the next compressed chunk from the file.
    /// Equivalent to `.next()`, as this also is an iterator.
    /// Returns `None` if all chunks have been read.
    fn read_next_chunk(&mut self) -> Option<Result<Chunk>> { self.next() }

    /// Create a new reader that calls the provided progress
    /// callback for each chunk that is read from the file.
    /// If the file can be successfully decoded,
    /// the progress will always at least once include 0.0 at the start and 1.0 at the end.
    fn on_progress<F>(self, on_progress: F) -> OnProgressChunksReader<Self, F> where F: FnMut(f64) {
        OnProgressChunksReader { chunks_reader: self, callback: on_progress, decoded_chunks: 0 }
    }

    /// Decompress all blocks in the file, using multiple cpu cores, and call the supplied closure for each block.
    /// The order of the blocks is not deterministic.
    /// You can also use `parallel_decompressor` to obtain an iterator instead.
    /// Will fallback to sequential processing where threads are not available, or where it would not speed up the process.
    // FIXME try async + futures instead of rayon! Maybe even allows for external async decoding? (-> impl Stream<UncompressedBlock>)
    fn decompress_parallel(
        self, pedantic: bool,
        mut insert_block: impl FnMut(&MetaData, UncompressedBlock) -> UnitResult
    ) -> UnitResult
    {
        let mut decompressor = match self.parallel_decompressor(pedantic) {
            Err(old_self) => return old_self.decompress_sequential(pedantic, insert_block),
            Ok(decompressor) => decompressor,
        };

        while let Some(block) = decompressor.next() {
            insert_block(decompressor.meta_data(), block?)?;
        }

        debug_assert_eq!(decompressor.len(), 0, "compressed blocks left after decompressing all blocks");
        Ok(())
    }

    /// Return an iterator that decompresses the chunks with multiple threads.
    /// The order of the blocks is not deterministic.
    /// Use `ParallelBlockDecompressor::new` if you want to use your own thread pool.
    /// By default, this uses as many threads as there are CPUs.
    /// Returns the `self` if there is no need for parallel decompression.
    fn parallel_decompressor(self, pedantic: bool) -> std::result::Result<ParallelBlockDecompressor<Self>, Self> {
        ParallelBlockDecompressor::new(self, pedantic)
    }

    /// Return an iterator that decompresses the chunks in this thread.
    /// You can alternatively use `sequential_decompressor` if you prefer an external iterator.
    fn decompress_sequential(
        self, pedantic: bool,
        mut insert_block: impl FnMut(&MetaData, UncompressedBlock) -> UnitResult
    ) -> UnitResult
    {
        let mut decompressor = self.sequential_decompressor(pedantic);
        while let Some(block) = decompressor.next() {
            insert_block(decompressor.meta_data(), block?)?;
        }

        debug_assert_eq!(decompressor.len(), 0, "compressed blocks left after decompressing all blocks");
        Ok(())
    }

    /// Prepare reading the chunks sequentially, only a single thread, but with less memory overhead.
    fn sequential_decompressor(self, pedantic: bool) -> SequentialBlockDecompressor<Self> {
        SequentialBlockDecompressor { remaining_chunks_reader: self, pedantic }
    }
}

impl<R, F> ChunksReader for OnProgressChunksReader<R, F> where R: ChunksReader, F: FnMut(f64) {
    fn meta_data(&self) -> &MetaData { self.chunks_reader.meta_data() }
    fn expected_chunk_count(&self) -> usize { self.chunks_reader.expected_chunk_count() }
}

impl<R, F> ExactSizeIterator for OnProgressChunksReader<R, F> where R: ChunksReader, F: FnMut(f64) {}
impl<R, F> Iterator for OnProgressChunksReader<R, F> where R: ChunksReader, F: FnMut(f64) {
    type Item = Result<Chunk>;

    fn next(&mut self) -> Option<Self::Item> {
        self.chunks_reader.next().map(|item|{
            {
                let total_chunks = self.expected_chunk_count() as f64;
                let callback = &mut self.callback;
                callback(self.decoded_chunks as f64 / total_chunks);
            }

            self.decoded_chunks += 1;
            item
        })
            .or_else(||{
                debug_assert_eq!(
                    self.decoded_chunks, self.expected_chunk_count(),
                    "chunks reader finished but not all chunks are decompressed"
                );

                let callback = &mut self.callback;
                callback(1.0);
                None
            })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.chunks_reader.size_hint()
    }
}

impl<R: Read + Seek> ChunksReader for AllChunksReader<R> {
    fn meta_data(&self) -> &MetaData { &self.meta_data }
    fn expected_chunk_count(&self) -> usize { self.remaining_chunks.end }
}

impl<R: Read + Seek> ExactSizeIterator for AllChunksReader<R> {}
impl<R: Read + Seek> Iterator for AllChunksReader<R> {
    type Item = Result<Chunk>;

    fn next(&mut self) -> Option<Self::Item> {
        // read as many chunks as the file should contain (inferred from meta data)
        let next_chunk = self.remaining_chunks.next()
            .map(|_| Chunk::read(&mut self.remaining_bytes, &self.meta_data));

        // if no chunks are left, but some bytes remain, return error
        if self.pedantic && next_chunk.is_none() && self.remaining_bytes.peek_u8().is_ok() {
            return Some(Err(Error::invalid("end of file expected")));
        }

        next_chunk
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.remaining_chunks.len(), Some(self.remaining_chunks.len()))
    }
}

impl<R: Read + Seek> ChunksReader for FilteredChunksReader<R> {
    fn meta_data(&self) -> &MetaData { &self.meta_data }
    fn expected_chunk_count(&self) -> usize { self.expected_filtered_chunk_count }
}

impl<R: Read + Seek> ExactSizeIterator for FilteredChunksReader<R> {}
impl<R: Read + Seek> Iterator for FilteredChunksReader<R> {
    type Item = Result<Chunk>;

    fn next(&mut self) -> Option<Self::Item> {
        // read as many chunks as we have desired chunk offsets
        self.remaining_filtered_chunk_indices.next().map(|next_chunk_location|{
            self.remaining_bytes.skip_to( // no-op for seek at current position, uses skip_bytes for small amounts
                                          usize::try_from(next_chunk_location)
                                              .expect("too large chunk position for this machine")
            )?;

            let meta_data = &self.meta_data;
            Chunk::read(&mut self.remaining_bytes, meta_data)
        })

        // TODO remember last chunk index and then seek to index+size and check whether bytes are left?
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.remaining_filtered_chunk_indices.len(), Some(self.remaining_filtered_chunk_indices.len()))
    }
}

/// Read all chunks from the file, decompressing each chunk immediately.
/// Implements iterator.
#[derive(Debug)]
pub struct SequentialBlockDecompressor<R: ChunksReader> {
    remaining_chunks_reader: R,
    pedantic: bool,
}

impl<R: ChunksReader> SequentialBlockDecompressor<R> {

    /// The extracted meta data from the image file.
    pub fn meta_data(&self) -> &MetaData { self.remaining_chunks_reader.meta_data() }

    /// Read and then decompress a single block of pixels from the byte source.
    pub fn decompress_next_block(&mut self) -> Option<Result<UncompressedBlock>> {
        self.remaining_chunks_reader.read_next_chunk().map(|compressed_chunk|{
            UncompressedBlock::decompress_chunk(compressed_chunk?, &self.remaining_chunks_reader.meta_data(), self.pedantic)
        })
    }
}

/// Decompress the chunks in a file in parallel.
/// The first call to `next` will fill the thread pool with jobs,
/// starting to decompress the next few blocks.
/// These jobs will finish, even if you stop reading more blocks.
/// Implements iterator.
#[derive(Debug)]
pub struct ParallelBlockDecompressor<R: ChunksReader> {
    remaining_chunks: R,
    sender: flume::Sender<Result<UncompressedBlock>>,
    receiver: flume::Receiver<Result<UncompressedBlock>>,
    currently_decompressing_count: usize,
    max_threads: usize,

    shared_meta_data_ref: Arc<MetaData>,
    pedantic: bool,

    pool: ThreadPool,
}

impl<R: ChunksReader> ParallelBlockDecompressor<R> {

    /// Create a new decompressor. Does not immediately spawn any tasks.
    /// Decompression starts after the first call to `next`.
    /// Returns the chunks if parallel decompression should not be used.
    /// Use `new_with_thread_pool` to customize the threadpool.
    pub fn new(chunks: R, pedantic: bool) -> std::result::Result<Self, R> {
        Self::new_with_thread_pool(chunks, pedantic, ||{
            rayon_core::ThreadPoolBuilder::new()
                .thread_name(|index| format!("OpenEXR Block Decompressor Thread #{}", index))
                .build()
        })
    }

    /// Create a new decompressor. Does not immediately spawn any tasks.
    /// Decompression starts after the first call to `next`.
    /// Returns the chunks if parallel decompression should not be used.
    pub fn new_with_thread_pool<CreatePool>(chunks: R, pedantic: bool, try_create_thread_pool: CreatePool)
        -> std::result::Result<Self, R>
        where CreatePool: FnOnce() -> std::result::Result<ThreadPool, ThreadPoolBuildError>
    {
        // if no compression is used in the file, don't use a threadpool
        if chunks.meta_data().headers.iter()
            .all(|head|head.compression == Compression::Uncompressed)
        {
            return Err(chunks);
        }

        // in case thread pool creation fails (for example on WASM currently),
        // we revert to sequential decompression
        let pool = match try_create_thread_pool() {
            Ok(pool) => pool,

            // TODO print warning?
            Err(_) => return Err(chunks),
        };

        let max_threads = pool.current_num_threads().max(1).min(chunks.len()) + 2; // ca one block for each thread at all times

        let (send, recv) = flume::unbounded(); // TODO bounded channel simplifies logic?

        Ok(Self {
            shared_meta_data_ref: Arc::new(chunks.meta_data().clone()),
            currently_decompressing_count: 0,
            remaining_chunks: chunks,
            sender: send,
            receiver: recv,
            pedantic,
            max_threads,

            pool,
        })
    }

    /// Fill the pool with decompression jobs. Returns the first job that finishes.
    pub fn decompress_next_block(&mut self) -> Option<Result<UncompressedBlock>> {

        while self.currently_decompressing_count < self.max_threads {
            let block = self.remaining_chunks.next();
            if let Some(block) = block {
                let block = match block {
                    Ok(block) => block,
                    Err(error) => return Some(Err(error))
                };

                let sender = self.sender.clone();
                let meta = self.shared_meta_data_ref.clone();
                let pedantic = self.pedantic;

                self.currently_decompressing_count += 1;

                self.pool.spawn(move || {
                    let decompressed_or_err = UncompressedBlock::decompress_chunk(
                        block, &meta, pedantic
                    );

                    // by now, decompressing could have failed in another thread.
                    // the error is then already handled, so we simply
                    // don't send the decompressed block and do nothing
                    let _ = sender.send(decompressed_or_err);
                });
            }
            else {
                // there are no chunks left to decompress
                break;
            }
        }

        if self.currently_decompressing_count > 0 {
            let next = self.receiver.recv()
                .expect("all decompressing senders hung up but more messages were expected");

            self.currently_decompressing_count -= 1;
            Some(next)
        }
        else {
            debug_assert!(self.receiver.try_recv().is_err(), "uncompressed chunks left in channel after decompressing all chunks"); // TODO not reliable
            debug_assert_eq!(self.len(), 0, "compressed chunks left after decompressing all chunks");
            None
        }
    }

    /// The extracted meta data of the image file.
    pub fn meta_data(&self) -> &MetaData { self.remaining_chunks.meta_data() }
}

impl<R: ChunksReader> ExactSizeIterator for SequentialBlockDecompressor<R> {}
impl<R: ChunksReader> Iterator for SequentialBlockDecompressor<R> {
    type Item = Result<UncompressedBlock>;
    fn next(&mut self) -> Option<Self::Item> { self.decompress_next_block() }
    fn size_hint(&self) -> (usize, Option<usize>) { self.remaining_chunks_reader.size_hint() }
}

impl<R: ChunksReader> ExactSizeIterator for ParallelBlockDecompressor<R> {}
impl<R: ChunksReader> Iterator for ParallelBlockDecompressor<R> {
    type Item = Result<UncompressedBlock>;
    fn next(&mut self) -> Option<Self::Item> { self.decompress_next_block() }
    fn size_hint(&self) -> (usize, Option<usize>) {
        let remaining = self.remaining_chunks.len() + self.currently_decompressing_count;
        (remaining, Some(remaining))
    }
}