1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
use crate::general::{
AbstractGroupAbelian, AbstractRingCommutative, Additive, Multiplicative, Operator,
};
/// A module combines two sets: one with an Abelian group structure and another with a
/// commutative ring structure.
///
/// `OpGroup` denotes the Abelian group operator (usually the addition). In addition, and external
/// multiplicative law noted `∘` is defined. Let `S` be the ring with multiplicative operator
/// `OpMul` noted `×`, multiplicative identity element noted `1`, and additive operator `OpAdd`.
/// Then:
///
/// ```notrust
/// ∀ a, b ∈ S
/// ∀ x, y ∈ Self
///
/// a ∘ (x + y) = (a ∘ x) + (a ∘ y)
/// (a + b) ∘ x = (a ∘ x) + (b ∘ x)
/// (a × b) ∘ x = a ∘ (b ∘ x)
/// 1 ∘ x = x
/// ```
pub trait AbstractModule<
OpGroup: Operator = Additive,
OpAdd: Operator = Additive,
OpMul: Operator = Multiplicative,
>: AbstractGroupAbelian<OpGroup>
{
/// The underlying scalar field.
type AbstractRing: AbstractRingCommutative<OpAdd, OpMul>;
/// Multiplies an element of the ring with an element of the module.
fn multiply_by(&self, r: Self::AbstractRing) -> Self;
}
impl<
N: AbstractRingCommutative<Additive, Multiplicative> + num::Num + crate::general::ClosedNeg,
> AbstractModule<Additive, Additive, Multiplicative> for num_complex::Complex<N>
{
type AbstractRing = N;
#[inline]
fn multiply_by(&self, r: N) -> Self {
self.clone() * r
}
}
macro_rules! impl_abstract_module(
($($T:ty),*) => {
$(impl AbstractModule for $T {
type AbstractRing = $T;
#[inline]
fn multiply_by(&self, r: $T) -> Self {
self.clone() * r
}
})*
}
);
impl_abstract_module!(i8, i16, i32, i64, isize, f32, f64);