1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
//! Parks the runtime.
//!
//! A combination of the various resource driver park handles.
use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::{Arc, Condvar, Mutex};
use crate::runtime::driver::{self, Driver};
use crate::util::TryLock;
use std::sync::atomic::Ordering::SeqCst;
use std::time::Duration;
pub(crate) struct Parker {
inner: Arc<Inner>,
}
pub(crate) struct Unparker {
inner: Arc<Inner>,
}
struct Inner {
/// Avoids entering the park if possible
state: AtomicUsize,
/// Used to coordinate access to the driver / `condvar`
mutex: Mutex<()>,
/// `Condvar` to block on if the driver is unavailable.
condvar: Condvar,
/// Resource (I/O, time, ...) driver
shared: Arc<Shared>,
}
const EMPTY: usize = 0;
const PARKED_CONDVAR: usize = 1;
const PARKED_DRIVER: usize = 2;
const NOTIFIED: usize = 3;
/// Shared across multiple Parker handles
struct Shared {
/// Shared driver. Only one thread at a time can use this
driver: TryLock<Driver>,
}
impl Parker {
pub(crate) fn new(driver: Driver) -> Parker {
Parker {
inner: Arc::new(Inner {
state: AtomicUsize::new(EMPTY),
mutex: Mutex::new(()),
condvar: Condvar::new(),
shared: Arc::new(Shared {
driver: TryLock::new(driver),
}),
}),
}
}
pub(crate) fn unpark(&self) -> Unparker {
Unparker {
inner: self.inner.clone(),
}
}
pub(crate) fn park(&mut self, handle: &driver::Handle) {
self.inner.park(handle);
}
pub(crate) fn park_timeout(&mut self, handle: &driver::Handle, duration: Duration) {
// Only parking with zero is supported...
assert_eq!(duration, Duration::from_millis(0));
if let Some(mut driver) = self.inner.shared.driver.try_lock() {
driver.park_timeout(handle, duration);
}
}
pub(crate) fn shutdown(&mut self, handle: &driver::Handle) {
self.inner.shutdown(handle);
}
}
impl Clone for Parker {
fn clone(&self) -> Parker {
Parker {
inner: Arc::new(Inner {
state: AtomicUsize::new(EMPTY),
mutex: Mutex::new(()),
condvar: Condvar::new(),
shared: self.inner.shared.clone(),
}),
}
}
}
impl Unparker {
pub(crate) fn unpark(&self, driver: &driver::Handle) {
self.inner.unpark(driver);
}
}
impl Inner {
/// Parks the current thread for at most `dur`.
fn park(&self, handle: &driver::Handle) {
// If we were previously notified then we consume this notification and
// return quickly.
if self
.state
.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
.is_ok()
{
return;
}
if let Some(mut driver) = self.shared.driver.try_lock() {
self.park_driver(&mut driver, handle);
} else {
self.park_condvar();
}
}
fn park_condvar(&self) {
// Otherwise we need to coordinate going to sleep
let mut m = self.mutex.lock();
match self
.state
.compare_exchange(EMPTY, PARKED_CONDVAR, SeqCst, SeqCst)
{
Ok(_) => {}
Err(NOTIFIED) => {
// We must read here, even though we know it will be `NOTIFIED`.
// This is because `unpark` may have been called again since we read
// `NOTIFIED` in the `compare_exchange` above. We must perform an
// acquire operation that synchronizes with that `unpark` to observe
// any writes it made before the call to unpark. To do that we must
// read from the write it made to `state`.
let old = self.state.swap(EMPTY, SeqCst);
debug_assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
return;
}
Err(actual) => panic!("inconsistent park state; actual = {}", actual),
}
loop {
m = self.condvar.wait(m).unwrap();
if self
.state
.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
.is_ok()
{
// got a notification
return;
}
// spurious wakeup, go back to sleep
}
}
fn park_driver(&self, driver: &mut Driver, handle: &driver::Handle) {
match self
.state
.compare_exchange(EMPTY, PARKED_DRIVER, SeqCst, SeqCst)
{
Ok(_) => {}
Err(NOTIFIED) => {
// We must read here, even though we know it will be `NOTIFIED`.
// This is because `unpark` may have been called again since we read
// `NOTIFIED` in the `compare_exchange` above. We must perform an
// acquire operation that synchronizes with that `unpark` to observe
// any writes it made before the call to unpark. To do that we must
// read from the write it made to `state`.
let old = self.state.swap(EMPTY, SeqCst);
debug_assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
return;
}
Err(actual) => panic!("inconsistent park state; actual = {}", actual),
}
driver.park(handle);
match self.state.swap(EMPTY, SeqCst) {
NOTIFIED => {} // got a notification, hurray!
PARKED_DRIVER => {} // no notification, alas
n => panic!("inconsistent park_timeout state: {}", n),
}
}
fn unpark(&self, driver: &driver::Handle) {
// To ensure the unparked thread will observe any writes we made before
// this call, we must perform a release operation that `park` can
// synchronize with. To do that we must write `NOTIFIED` even if `state`
// is already `NOTIFIED`. That is why this must be a swap rather than a
// compare-and-swap that returns if it reads `NOTIFIED` on failure.
match self.state.swap(NOTIFIED, SeqCst) {
EMPTY => {} // no one was waiting
NOTIFIED => {} // already unparked
PARKED_CONDVAR => self.unpark_condvar(),
PARKED_DRIVER => driver.unpark(),
actual => panic!("inconsistent state in unpark; actual = {}", actual),
}
}
fn unpark_condvar(&self) {
// There is a period between when the parked thread sets `state` to
// `PARKED` (or last checked `state` in the case of a spurious wake
// up) and when it actually waits on `cvar`. If we were to notify
// during this period it would be ignored and then when the parked
// thread went to sleep it would never wake up. Fortunately, it has
// `lock` locked at this stage so we can acquire `lock` to wait until
// it is ready to receive the notification.
//
// Releasing `lock` before the call to `notify_one` means that when the
// parked thread wakes it doesn't get woken only to have to wait for us
// to release `lock`.
drop(self.mutex.lock());
self.condvar.notify_one();
}
fn shutdown(&self, handle: &driver::Handle) {
if let Some(mut driver) = self.shared.driver.try_lock() {
driver.shutdown(handle);
}
self.condvar.notify_all();
}
}