1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
use na::Point2;

use crate::math::Real;
use crate::shape::{SegmentPointLocation, Triangle, TriangleOrientation};
use crate::utils::{self, SegmentsIntersection};

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum InFlag {
    PIn,
    QIn,
    Unknown,
}

/// Location of a point on a polyline.
pub enum PolylinePointLocation {
    /// Point on a vertex.
    OnVertex(usize),
    /// Point on an edge.
    OnEdge(usize, usize, [Real; 2]),
}

impl PolylinePointLocation {
    /// Computes the point corresponding to this location.
    pub fn to_point(&self, pts: &[Point2<Real>]) -> Point2<Real> {
        match self {
            PolylinePointLocation::OnVertex(i) => pts[*i],
            PolylinePointLocation::OnEdge(i1, i2, bcoords) => {
                pts[*i1] * bcoords[0] + pts[*i2].coords * bcoords[1]
            }
        }
    }

    fn from_segment_point_location(a: usize, b: usize, loc: SegmentPointLocation) -> Self {
        match loc {
            SegmentPointLocation::OnVertex(0) => PolylinePointLocation::OnVertex(a),
            SegmentPointLocation::OnVertex(1) => PolylinePointLocation::OnVertex(b),
            SegmentPointLocation::OnVertex(_) => unreachable!(),
            SegmentPointLocation::OnEdge(bcoords) => PolylinePointLocation::OnEdge(a, b, bcoords),
        }
    }
}

/// Computes the intersection points of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
pub fn convex_polygons_intersection_points(
    poly1: &[Point2<Real>],
    poly2: &[Point2<Real>],
    out: &mut Vec<Point2<Real>>,
) {
    convex_polygons_intersection(poly1, poly2, |loc1, loc2| {
        if let Some(loc1) = loc1 {
            out.push(loc1.to_point(poly1))
        } else if let Some(loc2) = loc2 {
            out.push(loc2.to_point(poly2))
        }
    })
}

/// Computes the intersection of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
pub fn convex_polygons_intersection(
    poly1: &[Point2<Real>],
    poly2: &[Point2<Real>],
    mut out: impl FnMut(Option<PolylinePointLocation>, Option<PolylinePointLocation>),
) {
    const EPS: Real = Real::EPSILON * 100.0;

    // FIXME: this does not handle correctly the case where the
    // first triangle of the polygon is degenerate.
    let rev1 = poly1.len() > 2
        && Triangle::orientation2d(&poly1[0], &poly1[1], &poly1[2], EPS)
            == TriangleOrientation::Clockwise;
    let rev2 = poly2.len() > 2
        && Triangle::orientation2d(&poly2[0], &poly2[1], &poly2[2], EPS)
            == TriangleOrientation::Clockwise;

    // println!("rev1: {}, rev2: {}", rev1, rev2);

    let n = poly1.len();
    let m = poly2.len();

    let mut a = 0;
    let mut b = 0;
    let mut aa = 0;
    let mut ba = 0;
    let mut inflag = InFlag::Unknown;
    let mut first_point_found = false;

    // Quit when both adv. indices have cycled, or one has cycled twice.
    while (aa < n || ba < m) && aa < 2 * n && ba < 2 * m {
        let (a1, a2) = if rev1 {
            ((n - a) % n, n - a - 1)
        } else {
            ((a + n - 1) % n, a)
        };

        let (b1, b2) = if rev2 {
            ((m - b) % m, m - b - 1)
        } else {
            ((b + m - 1) % m, b)
        };

        // println!("Current indices: ({}, {}), ({}, {})", a1, a2, b1, b2);

        let dir_edge1 = poly1[a2] - poly1[a1];
        let dir_edge2 = poly2[b2] - poly2[b1];

        let cross = Triangle::orientation2d(
            &Point2::origin(),
            &Point2::from(dir_edge1),
            &Point2::from(dir_edge2),
            EPS,
        );
        let a_hb = Triangle::orientation2d(&poly2[b1], &poly2[b2], &poly1[a2], EPS);
        let b_ha = Triangle::orientation2d(&poly1[a1], &poly1[a2], &poly2[b2], EPS);

        // If edge1 & edge2 intersect, update inflag.
        if let Some(inter) =
            utils::segments_intersection2d(&poly1[a1], &poly1[a2], &poly2[b1], &poly2[b2], EPS)
        {
            match inter {
                SegmentsIntersection::Point { loc1, loc2 } => {
                    let loc1 = PolylinePointLocation::from_segment_point_location(a1, a2, loc1);
                    let loc2 = PolylinePointLocation::from_segment_point_location(b1, b2, loc2);
                    out(Some(loc1), Some(loc2));

                    if inflag == InFlag::Unknown && !first_point_found {
                        // This is the first point.
                        aa = 0;
                        ba = 0;
                        first_point_found = true;
                    }

                    // Update inflag.
                    if a_hb == TriangleOrientation::CounterClockwise {
                        inflag = InFlag::PIn;
                    } else if b_ha == TriangleOrientation::CounterClockwise {
                        inflag = InFlag::QIn;
                    }
                }
                SegmentsIntersection::Segment {
                    first_loc1,
                    first_loc2,
                    second_loc1,
                    second_loc2,
                } => {
                    // Special case: edge1 & edge2 overlap and oppositely oriented.
                    if dir_edge1.dot(&dir_edge2) < 0.0 {
                        let loc1 =
                            PolylinePointLocation::from_segment_point_location(a1, a2, first_loc1);
                        let loc2 =
                            PolylinePointLocation::from_segment_point_location(b1, b2, first_loc2);
                        out(Some(loc1), Some(loc2));

                        let loc1 =
                            PolylinePointLocation::from_segment_point_location(a1, a2, second_loc1);
                        let loc2 =
                            PolylinePointLocation::from_segment_point_location(b1, b2, second_loc2);
                        out(Some(loc1), Some(loc2));

                        return;
                    }
                }
            }
        }

        // Special case: edge1 & edge2 parallel and separated.
        if cross == TriangleOrientation::Degenerate
            && a_hb == TriangleOrientation::Clockwise
            && b_ha == TriangleOrientation::Clockwise
        {
            return;
        }
        // Special case: edge1 & edge2 collinear.
        else if cross == TriangleOrientation::Degenerate
            && a_hb == TriangleOrientation::Degenerate
            && b_ha == TriangleOrientation::Degenerate
        {
            // Advance but do not output point.
            if inflag == InFlag::PIn {
                b = advance(b, &mut ba, m);
            } else {
                a = advance(a, &mut aa, n);
            }
        }
        // Generic cases.
        else if cross == TriangleOrientation::CounterClockwise {
            if b_ha == TriangleOrientation::CounterClockwise {
                if inflag == InFlag::PIn {
                    out(Some(PolylinePointLocation::OnVertex(a2)), None)
                }
                a = advance(a, &mut aa, n);
            } else {
                if inflag == InFlag::QIn {
                    out(None, Some(PolylinePointLocation::OnVertex(b2)))
                }
                b = advance(b, &mut ba, m);
            }
        } else {
            // We have cross == TriangleOrientation::Clockwise.
            if a_hb == TriangleOrientation::CounterClockwise {
                if inflag == InFlag::QIn {
                    out(None, Some(PolylinePointLocation::OnVertex(b2)))
                }
                b = advance(b, &mut ba, m);
            } else {
                if inflag == InFlag::PIn {
                    out(Some(PolylinePointLocation::OnVertex(a2)), None)
                }
                a = advance(a, &mut aa, n);
            }
        }
    }

    if !first_point_found {
        // No intersection: test if one polygon completely encloses the other.
        let mut orient = TriangleOrientation::Degenerate;
        let mut ok = true;

        for a in 0..n {
            let a1 = (a + n - 1) % n; // a - 1
            let new_orient = Triangle::orientation2d(&poly1[a1], &poly1[a], &poly2[0], EPS);

            if orient == TriangleOrientation::Degenerate {
                orient = new_orient
            } else if new_orient != orient && new_orient != TriangleOrientation::Degenerate {
                ok = false;
                break;
            }
        }

        if ok {
            for b in 0..m {
                out(None, Some(PolylinePointLocation::OnVertex(b)))
            }
        }

        let mut orient = TriangleOrientation::Degenerate;
        let mut ok = true;

        for b in 0..m {
            let b1 = (b + m - 1) % m; // b - 1
            let new_orient = Triangle::orientation2d(&poly2[b1], &poly2[b], &poly1[0], EPS);

            if orient == TriangleOrientation::Degenerate {
                orient = new_orient
            } else if new_orient != orient && new_orient != TriangleOrientation::Degenerate {
                ok = false;
                break;
            }
        }

        if ok {
            for a in 0..n {
                out(Some(PolylinePointLocation::OnVertex(a)), None)
            }
        }
    }
}

#[inline]
fn advance(a: usize, aa: &mut usize, n: usize) -> usize {
    *aa += 1;
    (a + 1) % n
}