1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
//! The Gilbert–Johnson–Keerthi distance algorithm.
use na::{self, ComplexField, Unit};
use crate::query::gjk::{CSOPoint, ConstantOrigin, VoronoiSimplex};
use crate::shape::SupportMap;
// use query::Proximity;
use crate::math::{Isometry, Point, Real, Vector, DIM};
use crate::query::{self, Ray};
use num::{Bounded, Zero};
/// Results of the GJK algorithm.
#[derive(Clone, Debug, PartialEq)]
pub enum GJKResult {
/// Result of the GJK algorithm when the origin is inside of the polytope.
Intersection,
/// Result of the GJK algorithm when a projection of the origin on the polytope is found.
///
/// Both points and vector are expressed in the local-space of the first geometry involved
/// in the GJK execution.
ClosestPoints(Point<Real>, Point<Real>, Unit<Vector<Real>>),
/// Result of the GJK algorithm when the origin is too close to the polytope but not inside of it.
///
/// The returned vector is expressed in the local-space of the first geometry involved in the
/// GJK execution.
Proximity(Unit<Vector<Real>>),
/// Result of the GJK algorithm when the origin is too far away from the polytope.
///
/// The returned vector is expressed in the local-space of the first geomety involved in the
/// GJK execution.
NoIntersection(Unit<Vector<Real>>),
}
/// The absolute tolerence used by the GJK algorithm.
pub fn eps_tol() -> Real {
let _eps = crate::math::DEFAULT_EPSILON;
_eps * 10.0
}
/// Projects the origin on the boundary of the given shape.
///
/// The origin is assumed to be outside of the shape. If it is inside,
/// use the EPA algorithm instead.
/// Return `None` if the origin is not inside of the shape or if
/// the EPA algorithm failed to compute the projection.
///
/// Return the projected point in the local-space of `g`.
pub fn project_origin<G: ?Sized>(
m: &Isometry<Real>,
g: &G,
simplex: &mut VoronoiSimplex,
) -> Option<Point<Real>>
where
G: SupportMap,
{
match closest_points(
&m.inverse(),
g,
&ConstantOrigin,
Real::max_value(),
true,
simplex,
) {
GJKResult::Intersection => None,
GJKResult::ClosestPoints(p, _, _) => Some(p),
_ => unreachable!(),
}
}
/*
* Separating Axis GJK
*/
/// Projects the origin on a shape using the Separating Axis GJK algorithm.
/// The algorithm will stop as soon as the polytope can be proven to be at least `max_dist` away
/// from the origin.
///
/// # Arguments:
/// * simplex - the simplex to be used by the GJK algorithm. It must be already initialized
/// with at least one point on the shape boundary.
/// * exact_dist - if `false`, the gjk will stop as soon as it can prove that the origin is at
/// a distance smaller than `max_dist` but not inside of `shape`. In that case, it returns a
/// `GJKResult::Proximity(sep_axis)` where `sep_axis` is a separating axis. If `false` the gjk will
/// compute the exact distance and return `GJKResult::Projection(point)` if the origin is closer
/// than `max_dist` but not inside `shape`.
pub fn closest_points<G1: ?Sized, G2: ?Sized>(
pos12: &Isometry<Real>,
g1: &G1,
g2: &G2,
max_dist: Real,
exact_dist: bool,
simplex: &mut VoronoiSimplex,
) -> GJKResult
where
G1: SupportMap,
G2: SupportMap,
{
let _eps = crate::math::DEFAULT_EPSILON;
let _eps_tol: Real = eps_tol();
let _eps_rel: Real = ComplexField::sqrt(_eps_tol);
// FIXME: reset the simplex if it is empty?
let mut proj = simplex.project_origin_and_reduce();
let mut old_dir;
if let Some(proj_dir) = Unit::try_new(proj.coords, 0.0) {
old_dir = -proj_dir;
} else {
return GJKResult::Intersection;
}
let mut max_bound = Real::max_value();
let mut dir;
let mut niter = 0;
loop {
let old_max_bound = max_bound;
if let Some((new_dir, dist)) = Unit::try_new_and_get(-proj.coords, _eps_tol) {
dir = new_dir;
max_bound = dist;
} else {
// The origin is on the simplex.
return GJKResult::Intersection;
}
if max_bound >= old_max_bound {
if exact_dist {
let (p1, p2) = result(simplex, true);
return GJKResult::ClosestPoints(p1, p2, old_dir); // upper bounds inconsistencies
} else {
return GJKResult::Proximity(old_dir);
}
}
let cso_point = CSOPoint::from_shapes(pos12, g1, g2, &dir);
let min_bound = -dir.dot(&cso_point.point.coords);
assert!(min_bound.is_finite());
if min_bound > max_dist {
return GJKResult::NoIntersection(dir);
} else if !exact_dist && min_bound > 0.0 && max_bound <= max_dist {
return GJKResult::Proximity(old_dir);
} else if max_bound - min_bound <= _eps_rel * max_bound {
if exact_dist {
let (p1, p2) = result(simplex, false);
return GJKResult::ClosestPoints(p1, p2, dir); // the distance found has a good enough precision
} else {
return GJKResult::Proximity(dir);
}
}
if !simplex.add_point(cso_point) {
if exact_dist {
let (p1, p2) = result(simplex, false);
return GJKResult::ClosestPoints(p1, p2, dir);
} else {
return GJKResult::Proximity(dir);
}
}
old_dir = dir;
proj = simplex.project_origin_and_reduce();
if simplex.dimension() == DIM {
if min_bound >= _eps_tol {
if exact_dist {
let (p1, p2) = result(simplex, true);
return GJKResult::ClosestPoints(p1, p2, old_dir);
} else {
// NOTE: previous implementation used old_proj here.
return GJKResult::Proximity(old_dir);
}
} else {
return GJKResult::Intersection; // Point inside of the cso.
}
}
niter += 1;
if niter == 10000 {
return GJKResult::NoIntersection(Vector::x_axis());
}
}
}
/// Casts a ray on a support map using the GJK algorithm.
pub fn cast_local_ray<G: ?Sized>(
shape: &G,
simplex: &mut VoronoiSimplex,
ray: &Ray,
max_toi: Real,
) -> Option<(Real, Vector<Real>)>
where
G: SupportMap,
{
let g2 = ConstantOrigin;
minkowski_ray_cast(&Isometry::identity(), shape, &g2, ray, max_toi, simplex)
}
/// Compute the normal and the distance that can travel `g1` along the direction
/// `dir` so that `g1` and `g2` just touch.
///
/// The `dir` vector must be expressed in the local-space of the first shape.
pub fn directional_distance<G1: ?Sized, G2: ?Sized>(
pos12: &Isometry<Real>,
g1: &G1,
g2: &G2,
dir: &Vector<Real>,
simplex: &mut VoronoiSimplex,
) -> Option<(Real, Vector<Real>, Point<Real>, Point<Real>)>
where
G1: SupportMap,
G2: SupportMap,
{
let ray = Ray::new(Point::origin(), *dir);
minkowski_ray_cast(pos12, g1, g2, &ray, Real::max_value(), simplex).map(|(toi, normal)| {
let witnesses = if !toi.is_zero() {
result(simplex, simplex.dimension() == DIM)
} else {
// If there is penetration, the witness points
// are undefined.
(Point::origin(), Point::origin())
};
(toi, normal, witnesses.0, witnesses.1)
})
}
// Ray-cast on the Minkowski Difference `g1 - pos12 * g2`.
fn minkowski_ray_cast<G1: ?Sized, G2: ?Sized>(
pos12: &Isometry<Real>,
g1: &G1,
g2: &G2,
ray: &Ray,
max_toi: Real,
simplex: &mut VoronoiSimplex,
) -> Option<(Real, Vector<Real>)>
where
G1: SupportMap,
G2: SupportMap,
{
let _eps = crate::math::DEFAULT_EPSILON;
let _eps_tol: Real = eps_tol();
let _eps_rel: Real = ComplexField::sqrt(_eps_tol);
let ray_length = ray.dir.norm();
if relative_eq!(ray_length, 0.0) {
return None;
}
let mut ltoi = 0.0;
let mut curr_ray = Ray::new(ray.origin, ray.dir / ray_length);
let dir = -curr_ray.dir;
let mut ldir = dir;
// Initialize the simplex.
let support_point = CSOPoint::from_shapes(pos12, g1, g2, &dir);
simplex.reset(support_point.translate(&-curr_ray.origin.coords));
// FIXME: reset the simplex if it is empty?
let mut proj = simplex.project_origin_and_reduce();
let mut max_bound = Real::max_value();
let mut dir;
let mut niter = 0;
let mut last_chance = false;
loop {
let old_max_bound = max_bound;
if let Some((new_dir, dist)) = Unit::try_new_and_get(-proj.coords, _eps_tol) {
dir = new_dir;
max_bound = dist;
} else {
return Some((ltoi / ray_length, ldir));
}
let support_point = if max_bound >= old_max_bound {
// Upper bounds inconsistencies. Consider the projection as a valid support point.
last_chance = true;
CSOPoint::single_point(proj + curr_ray.origin.coords)
} else {
CSOPoint::from_shapes(pos12, g1, g2, &dir)
};
if last_chance && ltoi > 0.0 {
// last_chance && ltoi > 0.0 && (support_point.point - curr_ray.origin).dot(&ldir) >= 0.0 {
return Some((ltoi / ray_length, ldir));
}
// Clip the ray on the support halfspace (None <=> t < 0)
// The configurations are:
// dir.dot(curr_ray.dir) | t | Action
// −−−−−−−−−−−−−−−−−−−−-----+−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// < 0 | < 0 | Continue.
// < 0 | > 0 | New lower bound, move the origin.
// > 0 | < 0 | Miss. No intersection.
// > 0 | > 0 | New higher bound.
match query::details::ray_toi_with_halfspace(&support_point.point, &dir, &curr_ray) {
Some(t) => {
if dir.dot(&curr_ray.dir) < 0.0 && t > 0.0 {
// new lower bound
ldir = *dir;
ltoi += t;
// NOTE: we divide by ray_length instead of doing max_toi * ray_length
// because the multiplication may cause an overflow if max_toi is set
// to Real::max_value() by users that want to have an infinite ray.
if ltoi / ray_length > max_toi {
return None;
}
let shift = curr_ray.dir * t;
curr_ray.origin += shift;
max_bound = Real::max_value();
simplex.modify_pnts(&|pt| pt.translate_mut(&-shift));
last_chance = false;
}
}
None => {
if dir.dot(&curr_ray.dir) > _eps_tol {
// miss
return None;
}
}
}
if last_chance {
return None;
}
let min_bound = -dir.dot(&(support_point.point.coords - curr_ray.origin.coords));
assert!(min_bound.is_finite());
if max_bound - min_bound <= _eps_rel * max_bound {
// This is needed when using fixed-points to avoid missing
// some castes.
// FIXME: I feel like we should always return `Some` in
// this case, even with floating-point numbers. Though it
// has not been sufficinetly tested with floats yet to be sure.
if cfg!(feature = "improved_fixed_point_support") {
return Some((ltoi / ray_length, ldir));
} else {
return None;
}
}
let _ = simplex.add_point(support_point.translate(&-curr_ray.origin.coords));
proj = simplex.project_origin_and_reduce();
if simplex.dimension() == DIM {
if min_bound >= _eps_tol {
return None;
} else {
return Some((ltoi / ray_length, ldir)); // Point inside of the cso.
}
}
niter += 1;
if niter == 10000 {
return None;
}
}
}
fn result(simplex: &VoronoiSimplex, prev: bool) -> (Point<Real>, Point<Real>) {
let mut res = (Point::origin(), Point::origin());
if prev {
for i in 0..simplex.prev_dimension() + 1 {
let coord = simplex.prev_proj_coord(i);
let point = simplex.prev_point(i);
res.0 += point.orig1.coords * coord;
res.1 += point.orig2.coords * coord;
}
res
} else {
for i in 0..simplex.dimension() + 1 {
let coord = simplex.proj_coord(i);
let point = simplex.point(i);
res.0 += point.orig1.coords * coord;
res.1 += point.orig2.coords * coord;
}
res
}
}