1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/*!
A very fast 2D [Delaunay Triangulation](https://en.wikipedia.org/wiki/Delaunay_triangulation) library for Rust.
A port of [Delaunator](https://github.com/mapbox/delaunator).
# Example
```rust
use delaunator::{Point, triangulate};
let points = vec![
Point { x: 0., y: 0. },
Point { x: 1., y: 0. },
Point { x: 1., y: 1. },
Point { x: 0., y: 1. },
];
let result = triangulate(&points).expect("No triangulation exists.");
println!("{:?}", result.triangles); // [0, 2, 1, 0, 3, 2]
```
*/
use std::{f64, fmt};
/// Near-duplicate points (where both `x` and `y` only differ within this value)
/// will not be included in the triangulation for robustness.
pub const EPSILON: f64 = f64::EPSILON * 2.0;
/// Represents a 2D point in the input vector.
#[derive(Clone, PartialEq)]
pub struct Point {
pub x: f64,
pub y: f64,
}
impl fmt::Debug for Point {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[{}, {}]", self.x, self.y)
}
}
impl Point {
fn dist2(&self, p: &Self) -> f64 {
let dx = self.x - p.x;
let dy = self.y - p.y;
dx * dx + dy * dy
}
fn orient(&self, q: &Self, r: &Self) -> bool {
(q.y - self.y) * (r.x - q.x) - (q.x - self.x) * (r.y - q.y) < 0.0
}
fn circumdelta(&self, b: &Self, c: &Self) -> (f64, f64) {
let dx = b.x - self.x;
let dy = b.y - self.y;
let ex = c.x - self.x;
let ey = c.y - self.y;
let bl = dx * dx + dy * dy;
let cl = ex * ex + ey * ey;
let d = 0.5 / (dx * ey - dy * ex);
let x = (ey * bl - dy * cl) * d;
let y = (dx * cl - ex * bl) * d;
(x, y)
}
fn circumradius2(&self, b: &Self, c: &Self) -> f64 {
let (x, y) = self.circumdelta(b, c);
x * x + y * y
}
fn circumcenter(&self, b: &Self, c: &Self) -> Self {
let (x, y) = self.circumdelta(b, c);
Self {
x: self.x + x,
y: self.y + y,
}
}
fn in_circle(&self, b: &Self, c: &Self, p: &Self) -> bool {
let dx = self.x - p.x;
let dy = self.y - p.y;
let ex = b.x - p.x;
let ey = b.y - p.y;
let fx = c.x - p.x;
let fy = c.y - p.y;
let ap = dx * dx + dy * dy;
let bp = ex * ex + ey * ey;
let cp = fx * fx + fy * fy;
dx * (ey * cp - bp * fy) - dy * (ex * cp - bp * fx) + ap * (ex * fy - ey * fx) < 0.0
}
fn nearly_equals(&self, p: &Self) -> bool {
(self.x - p.x).abs() <= EPSILON && (self.y - p.y).abs() <= EPSILON
}
}
/// Represents the area outside of the triangulation.
/// Halfedges on the convex hull (which don't have an adjacent halfedge)
/// will have this value.
pub const EMPTY: usize = usize::max_value();
/// Next halfedge in a triangle.
pub fn next_halfedge(i: usize) -> usize {
if i % 3 == 2 {
i - 2
} else {
i + 1
}
}
/// Previous halfedge in a triangle.
pub fn prev_halfedge(i: usize) -> usize {
if i % 3 == 0 {
i + 2
} else {
i - 1
}
}
/// Result of the Delaunay triangulation.
pub struct Triangulation {
/// A vector of point indices where each triple represents a Delaunay triangle.
/// All triangles are directed counter-clockwise.
pub triangles: Vec<usize>,
/// A vector of adjacent halfedge indices that allows traversing the triangulation graph.
///
/// `i`-th half-edge in the array corresponds to vertex `triangles[i]`
/// the half-edge is coming from. `halfedges[i]` is the index of a twin half-edge
/// in an adjacent triangle (or `EMPTY` for outer half-edges on the convex hull).
pub halfedges: Vec<usize>,
/// A vector of indices that reference points on the convex hull of the triangulation,
/// counter-clockwise.
pub hull: Vec<usize>,
}
impl Triangulation {
fn new(n: usize) -> Self {
let max_triangles = 2 * n - 5;
Self {
triangles: Vec::with_capacity(max_triangles * 3),
halfedges: Vec::with_capacity(max_triangles * 3),
hull: Vec::new(),
}
}
/// The number of triangles in the triangulation.
pub fn len(&self) -> usize {
self.triangles.len() / 3
}
fn add_triangle(
&mut self,
i0: usize,
i1: usize,
i2: usize,
a: usize,
b: usize,
c: usize,
) -> usize {
let t = self.triangles.len();
self.triangles.push(i0);
self.triangles.push(i1);
self.triangles.push(i2);
self.halfedges.push(a);
self.halfedges.push(b);
self.halfedges.push(c);
if a != EMPTY {
self.halfedges[a] = t;
}
if b != EMPTY {
self.halfedges[b] = t + 1;
}
if c != EMPTY {
self.halfedges[c] = t + 2;
}
t
}
fn legalize(&mut self, a: usize, points: &[Point], hull: &mut Hull) -> usize {
let b = self.halfedges[a];
// if the pair of triangles doesn't satisfy the Delaunay condition
// (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
// then do the same check/flip recursively for the new pair of triangles
//
// pl pl
// /||\ / \
// al/ || \bl al/ \a
// / || \ / \
// / a||b \ flip /___ar___\
// p0\ || /p1 => p0\---bl---/p1
// \ || / \ /
// ar\ || /br b\ /br
// \||/ \ /
// pr pr
//
let ar = prev_halfedge(a);
if b == EMPTY {
return ar;
}
let al = next_halfedge(a);
let bl = prev_halfedge(b);
let p0 = self.triangles[ar];
let pr = self.triangles[a];
let pl = self.triangles[al];
let p1 = self.triangles[bl];
let illegal = (&points[p0]).in_circle(&points[pr], &points[pl], &points[p1]);
if illegal {
self.triangles[a] = p1;
self.triangles[b] = p0;
let hbl = self.halfedges[bl];
let har = self.halfedges[ar];
// edge swapped on the other side of the hull (rare); fix the halfedge reference
if hbl == EMPTY {
let mut e = hull.start;
loop {
if hull.tri[e] == bl {
hull.tri[e] = a;
break;
}
e = hull.prev[e];
if e == hull.start {
break;
}
}
}
self.halfedges[a] = hbl;
self.halfedges[b] = har;
self.halfedges[ar] = bl;
if hbl != EMPTY {
self.halfedges[hbl] = a;
}
if har != EMPTY {
self.halfedges[har] = b;
}
if bl != EMPTY {
self.halfedges[bl] = ar;
}
let br = next_halfedge(b);
self.legalize(a, points, hull);
return self.legalize(br, points, hull);
}
ar
}
}
// data structure for tracking the edges of the advancing convex hull
struct Hull {
prev: Vec<usize>,
next: Vec<usize>,
tri: Vec<usize>,
hash: Vec<usize>,
start: usize,
center: Point,
}
impl Hull {
fn new(n: usize, center: Point, i0: usize, i1: usize, i2: usize, points: &[Point]) -> Self {
let hash_len = (n as f64).sqrt() as usize;
let mut hull = Self {
prev: vec![0; n], // edge to prev edge
next: vec![0; n], // edge to next edge
tri: vec![0; n], // edge to adjacent halfedge
hash: vec![EMPTY; hash_len], // angular edge hash
start: i0,
center,
};
hull.next[i0] = i1;
hull.prev[i2] = i1;
hull.next[i1] = i2;
hull.prev[i0] = i2;
hull.next[i2] = i0;
hull.prev[i1] = i0;
hull.tri[i0] = 0;
hull.tri[i1] = 1;
hull.tri[i2] = 2;
hull.hash_edge(&points[i0], i0);
hull.hash_edge(&points[i1], i1);
hull.hash_edge(&points[i2], i2);
hull
}
fn hash_key(&self, p: &Point) -> usize {
let dx = p.x - self.center.x;
let dy = p.y - self.center.y;
let p = dx / (dx.abs() + dy.abs());
let a = (if dy > 0.0 { 3.0 - p } else { 1.0 + p }) / 4.0; // [0..1]
let len = self.hash.len();
(((len as f64) * a).floor() as usize) % len
}
fn hash_edge(&mut self, p: &Point, i: usize) {
let key = self.hash_key(p);
self.hash[key] = i;
}
fn find_visible_edge(&self, p: &Point, points: &[Point]) -> (usize, bool) {
let mut start: usize = 0;
let key = self.hash_key(p);
let len = self.hash.len();
for j in 0..len {
start = self.hash[(key + j) % len];
if start != EMPTY && self.next[start] != EMPTY {
break;
}
}
start = self.prev[start];
let mut e = start;
while !p.orient(&points[e], &points[self.next[e]]) {
e = self.next[e];
if e == start {
return (EMPTY, false);
}
}
(e, e == start)
}
}
fn calc_bbox_center(points: &[Point]) -> Point {
let mut min_x = f64::INFINITY;
let mut min_y = f64::INFINITY;
let mut max_x = f64::NEG_INFINITY;
let mut max_y = f64::NEG_INFINITY;
for p in points.iter() {
min_x = min_x.min(p.x);
min_y = min_y.min(p.y);
max_x = max_x.max(p.x);
max_y = max_y.max(p.y);
}
Point {
x: (min_x + max_x) / 2.0,
y: (min_y + max_y) / 2.0,
}
}
fn find_closest_point(points: &[Point], p0: &Point) -> Option<usize> {
let mut min_dist = f64::INFINITY;
let mut k: usize = 0;
for (i, p) in points.iter().enumerate() {
let d = p0.dist2(p);
if d > 0.0 && d < min_dist {
k = i;
min_dist = d;
}
}
if min_dist == f64::INFINITY {
None
} else {
Some(k)
}
}
fn find_seed_triangle(points: &[Point]) -> Option<(usize, usize, usize)> {
// pick a seed point close to the center
let bbox_center = calc_bbox_center(points);
let i0 = find_closest_point(points, &bbox_center)?;
let p0 = &points[i0];
// find the point closest to the seed
let i1 = find_closest_point(points, p0)?;
let p1 = &points[i1];
// find the third point which forms the smallest circumcircle with the first two
let mut min_radius = f64::INFINITY;
let mut i2: usize = 0;
for (i, p) in points.iter().enumerate() {
if i == i0 || i == i1 {
continue;
}
let r = p0.circumradius2(p1, p);
if r < min_radius {
i2 = i;
min_radius = r;
}
}
if min_radius == f64::INFINITY {
None
} else {
// swap the order of the seed points for counter-clockwise orientation
Some(if p0.orient(p1, &points[i2]) {
(i0, i2, i1)
} else {
(i0, i1, i2)
})
}
}
/// Triangulate a set of 2D points.
/// Returns `None` if no triangulation exists for the input (e.g. all points are collinear).
pub fn triangulate(points: &[Point]) -> Option<Triangulation> {
let n = points.len();
let (i0, i1, i2) = find_seed_triangle(points)?;
let center = (&points[i0]).circumcenter(&points[i1], &points[i2]);
let mut triangulation = Triangulation::new(n);
triangulation.add_triangle(i0, i1, i2, EMPTY, EMPTY, EMPTY);
// sort the points by distance from the seed triangle circumcenter
let mut dists: Vec<_> = points
.iter()
.enumerate()
.map(|(i, point)| (i, center.dist2(point)))
.collect();
dists.sort_unstable_by(|&(_, da), &(_, db)| da.partial_cmp(&db).unwrap());
let mut hull = Hull::new(n, center, i0, i1, i2, points);
for (k, &(i, _)) in dists.iter().enumerate() {
let p = &points[i];
// skip near-duplicates
if k > 0 && p.nearly_equals(&points[dists[k - 1].0]) {
continue;
}
// skip seed triangle points
if i == i0 || i == i1 || i == i2 {
continue;
}
// find a visible edge on the convex hull using edge hash
let (mut e, walk_back) = hull.find_visible_edge(p, points);
if e == EMPTY {
continue; // likely a near-duplicate point; skip it
}
// add the first triangle from the point
let t = triangulation.add_triangle(e, i, hull.next[e], EMPTY, EMPTY, hull.tri[e]);
// recursively flip triangles from the point until they satisfy the Delaunay condition
hull.tri[i] = triangulation.legalize(t + 2, points, &mut hull);
hull.tri[e] = t; // keep track of boundary triangles on the hull
// walk forward through the hull, adding more triangles and flipping recursively
let mut n = hull.next[e];
loop {
let q = hull.next[n];
if !p.orient(&points[n], &points[q]) {
break;
}
let t = triangulation.add_triangle(n, i, q, hull.tri[i], EMPTY, hull.tri[n]);
hull.tri[i] = triangulation.legalize(t + 2, points, &mut hull);
hull.next[n] = EMPTY; // mark as removed
n = q;
}
// walk backward from the other side, adding more triangles and flipping
if walk_back {
loop {
let q = hull.prev[e];
if !p.orient(&points[q], &points[e]) {
break;
}
let t = triangulation.add_triangle(q, i, e, EMPTY, hull.tri[e], hull.tri[q]);
triangulation.legalize(t + 2, points, &mut hull);
hull.tri[q] = t;
hull.next[e] = EMPTY; // mark as removed
e = q;
}
}
// update the hull indices
hull.prev[i] = e;
hull.next[i] = n;
hull.prev[n] = i;
hull.next[e] = i;
hull.start = e;
// save the two new edges in the hash table
hull.hash_edge(p, i);
hull.hash_edge(&points[e], e);
}
// expose hull as a vector of point indices
let mut e = hull.start;
loop {
triangulation.hull.push(e);
e = hull.next[e];
if e == hull.start {
break;
}
}
triangulation.triangles.shrink_to_fit();
triangulation.halfedges.shrink_to_fit();
Some(triangulation)
}