1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
use std::{
collections::{BTreeMap, VecDeque},
sync::Arc,
};
use ahash::HashMap;
use itertools::{izip, Itertools as _};
use nohash_hasher::IntSet;
use re_types_core::{ComponentName, Loggable, SizeBytes};
use crate::{
data_row::DataReadResult, ArrowMsg, DataCell, DataCellError, DataRow, DataRowError, EntityPath,
RowId, TimePoint, Timeline,
};
// ---
#[derive(thiserror::Error, Debug)]
pub enum DataTableError {
#[error("The schema has a column {0:?} that is missing in the data")]
MissingColumn(String),
#[error(
"Trying to deserialize time column data with invalid datatype: {name:?} ({datatype:#?})"
)]
NotATimeColumn { name: String, datatype: DataType },
#[error("Trying to deserialize column data that doesn't contain any ListArrays: {0:?}")]
NotAColumn(String),
#[error("Error with one or more the underlying data rows: {0}")]
DataRow(#[from] DataRowError),
#[error("Error with one or more the underlying data cells: {0}")]
DataCell(#[from] DataCellError),
#[error("Could not serialize/deserialize component instances to/from Arrow: {0}")]
Arrow(#[from] arrow2::error::Error),
#[error("Could not serialize component instances to/from Arrow: {0}")]
Serialization(#[from] re_types_core::SerializationError),
#[error("Could not deserialize component instances to/from Arrow: {0}")]
Deserialization(#[from] re_types_core::DeserializationError),
// Needed to handle TryFrom<T> -> T
#[error("Infallible")]
Unreachable(#[from] std::convert::Infallible),
}
pub type DataTableResult<T> = ::std::result::Result<T, DataTableError>;
// ---
pub type RowIdVec = VecDeque<RowId>;
pub type TimeOptVec = VecDeque<Option<i64>>;
pub type TimePointVec = VecDeque<TimePoint>;
pub type ErasedTimeVec = VecDeque<i64>;
pub type EntityPathVec = VecDeque<EntityPath>;
pub type DataCellOptVec = VecDeque<Option<DataCell>>;
/// A column's worth of [`DataCell`]s: a sparse collection of [`DataCell`]s that share the same
/// underlying type and likely point to shared, contiguous memory.
///
/// Each cell in the column corresponds to a different row of the same column.
#[derive(Default, Debug, Clone, PartialEq)]
pub struct DataCellColumn(pub DataCellOptVec);
impl std::ops::Deref for DataCellColumn {
type Target = VecDeque<Option<DataCell>>;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for DataCellColumn {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl std::ops::Index<usize> for DataCellColumn {
type Output = Option<DataCell>;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
&self.0[index]
}
}
impl std::ops::IndexMut<usize> for DataCellColumn {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.0[index]
}
}
impl DataCellColumn {
#[inline]
pub fn empty(num_rows: usize) -> Self {
Self(vec![None; num_rows].into())
}
/// Compute and cache the size of each individual underlying [`DataCell`].
/// This does nothing for cells whose size has already been computed and cached before.
///
/// Beware: this is _very_ costly!
#[inline]
pub fn compute_all_size_bytes(&mut self) {
re_tracing::profile_function!();
for cell in &mut self.0 {
cell.as_mut().map(|cell| cell.compute_size_bytes());
}
}
}
impl SizeBytes for DataCellColumn {
#[inline]
fn heap_size_bytes(&self) -> u64 {
self.0.heap_size_bytes()
}
}
// ---
/// A unique ID for a [`DataTable`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct TableId(pub(crate) re_tuid::Tuid);
impl std::fmt::Display for TableId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl TableId {
pub const ZERO: Self = Self(re_tuid::Tuid::ZERO);
/// Create a new unique [`TableId`] based on the current time.
#[allow(clippy::new_without_default)]
#[inline]
pub fn new() -> Self {
Self(re_tuid::Tuid::new())
}
/// Returns the next logical [`TableId`].
///
/// Beware: wrong usage can easily lead to conflicts.
/// Prefer [`TableId::new`] when unsure.
#[must_use]
#[inline]
pub fn next(&self) -> Self {
Self(self.0.next())
}
/// Returns the `n`-next logical [`TableId`].
///
/// This is equivalent to calling [`TableId::next`] `n` times.
/// Wraps the monotonically increasing back to zero on overflow.
///
/// Beware: wrong usage can easily lead to conflicts.
/// Prefer [`TableId::new`] when unsure.
#[must_use]
#[inline]
pub fn incremented_by(&self, n: u64) -> Self {
Self(self.0.incremented_by(n))
}
}
impl SizeBytes for TableId {
#[inline]
fn heap_size_bytes(&self) -> u64 {
0
}
#[inline]
fn is_pod() -> bool {
true
}
}
impl std::ops::Deref for TableId {
type Target = re_tuid::Tuid;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for TableId {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
re_types_core::delegate_arrow_tuid!(TableId as "rerun.controls.TableId");
/// A sparse table's worth of data, i.e. a batch of events: a collection of [`DataRow`]s.
/// This is the top-level layer in our data model.
///
/// Behind the scenes, a `DataTable` is organized in columns, where columns are represented by
/// sparse lists of [`DataCell`]s.
/// Cells within a single list are likely to reference shared, contiguous heap memory.
///
/// Cloning a `DataTable` can be _very_ costly depending on the contents.
///
/// ## Field visibility
///
/// To facilitate destructuring (`let DataTable { .. } = row`), all the fields in `DataTable` are
/// public.
///
/// Modifying any of these fields from outside this crate is considered undefined behavior.
/// Use the appropriate getters and setters instead.
///
/// ## Layout
///
/// A table is a collection of sparse rows, which are themselves collections of cells, where each
/// cell can contain an arbitrary number of instances:
/// ```text
/// [
/// [[C1, C1, C1], [], [C3], [C4, C4, C4], …],
/// [None, [C2, C2], [], [C4], …],
/// [None, [C2, C2], [], None, …],
/// …
/// ]
/// ```
///
/// Consider this example:
/// ```ignore
/// let row0 = {
/// let points: &[MyPoint] = &[[10.0, 10.0].into(), [20.0, 20.0].into()];
/// let colors: &[_] = &[MyColor::from_rgb(128, 128, 128)];
/// let labels: &[Label] = &[];
/// DataRow::from_cells3(RowId::new(), "a", timepoint(1, 1), (points, colors, labels))?
/// };
/// let row1 = {
/// let colors: &[MyColor] = &[];
/// DataRow::from_cells1(RowId::new(), "b", timepoint(1, 2), colors)?
/// };
/// let row2 = {
/// let colors: &[_] = &[MyColor::from_rgb(255, 255, 255)];
/// let labels: &[_] = &[Label("hey".into())];
/// DataRow::from_cells2(RowId::new(), "c", timepoint(2, 1), (colors, labels))?
/// };
/// let table = DataTable::from_rows(table_id, [row0, row1, row2]);
/// ```
///
/// A table has no arrow representation nor datatype of its own, as it is merely a collection of
/// independent rows.
///
/// The table above translates to the following, where each column is contiguous in memory:
/// ```text
/// ┌──────────┬───────────────────────────────┬──────────────────────────────────┬───────────────────┬─────────────┬──────────────────────────────────┬─────────────────┐
/// │ frame_nr ┆ log_time ┆ rerun.row_id ┆ rerun.entity_path ┆ ┆ rerun.components.Point2D ┆ rerun.components.Color │
/// ╞══════════╪═══════════════════════════════╪══════════════════════════════════╪═══════════════════╪═════════════╪══════════════════════════════════╪═════════════════╡
/// │ 1 ┆ 2023-04-05 09:36:47.188796402 ┆ 1753004ACBF5D6E651F2983C3DAF260C ┆ a ┆ [] ┆ [{x: 10, y: 10}, {x: 20, y: 20}] ┆ [2155905279] │
/// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
/// │ 1 ┆ 2023-04-05 09:36:47.188852222 ┆ 1753004ACBF5D6E651F2983C3DAF260C ┆ b ┆ - ┆ - ┆ [] │
/// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
/// │ 2 ┆ 2023-04-05 09:36:47.188855872 ┆ 1753004ACBF5D6E651F2983C3DAF260C ┆ c ┆ [hey] ┆ - ┆ [4294967295] │
/// └──────────┴───────────────────────────────┴──────────────────────────────────┴───────────────────┴─────────────┴──────────────────────────────────┴─────────────────┘
/// ```
///
/// ## Example
///
/// ```rust
/// # use re_log_types::{
/// # example_components::{MyColor, MyLabel, MyPoint},
/// # DataRow, DataTable, RowId, TableId, Timeline, TimePoint,
/// # };
/// #
/// # let table_id = TableId::new();
/// #
/// # let timepoint = |frame_nr: i64, clock: i64| {
/// # TimePoint::from([
/// # (Timeline::new_sequence("frame_nr"), frame_nr),
/// # (Timeline::new_sequence("clock"), clock),
/// # ])
/// # };
/// #
/// let row0 = {
/// let points: &[MyPoint] = &[MyPoint { x: 10.0, y: 10.0 }, MyPoint { x: 20.0, y: 20.0 }];
/// let colors: &[_] = &[MyColor(0xff7f7f7f)];
/// let labels: &[MyLabel] = &[];
///
/// DataRow::from_cells3(
/// RowId::new(),
/// "a",
/// timepoint(1, 1),
/// (points, colors, labels),
/// ).unwrap()
/// };
///
/// let row1 = {
/// let colors: &[MyColor] = &[];
///
/// DataRow::from_cells1(RowId::new(), "b", timepoint(1, 2), colors).unwrap()
/// };
///
/// let row2 = {
/// let colors: &[_] = &[MyColor(0xff7f7f7f)];
/// let labels: &[_] = &[MyLabel("hey".into())];
///
/// DataRow::from_cells2(
/// RowId::new(),
/// "c",
/// timepoint(2, 1),
/// (colors, labels),
/// ).unwrap()
/// };
///
/// let table_in = DataTable::from_rows(table_id, [row0, row1, row2]);
/// eprintln!("Table in:\n{table_in}");
///
/// let (schema, columns) = table_in.serialize().unwrap();
/// // eprintln!("{schema:#?}");
/// eprintln!("Wired chunk:\n{columns:#?}");
///
/// let table_out = DataTable::deserialize(table_id, &schema, &columns).unwrap();
/// eprintln!("Table out:\n{table_out}");
/// #
/// # assert_eq!(table_in, table_out);
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct DataTable {
/// Auto-generated `TUID`, uniquely identifying this batch of data and keeping track of the
/// client's wall-clock.
pub table_id: TableId,
/// The entire column of `RowId`s.
///
/// Keeps track of the unique identifier for each row that was generated by the clients.
pub col_row_id: RowIdVec,
/// All the rows for all the time columns.
///
/// The times are optional since not all rows are guaranteed to have a timestamp for every
/// single timeline (though it is highly likely to be the case in practice).
pub col_timelines: BTreeMap<Timeline, TimeOptVec>,
/// The entire column of [`EntityPath`]s.
///
/// The entity each row relates to, respectively.
pub col_entity_path: EntityPathVec,
/// All the rows for all the component columns.
///
/// The cells are optional since not all rows will have data for every single component
/// (i.e. the table is sparse).
pub columns: BTreeMap<ComponentName, DataCellColumn>,
}
impl DataTable {
/// Creates a new empty table with the given ID.
pub fn new(table_id: TableId) -> Self {
Self {
table_id,
col_row_id: Default::default(),
col_timelines: Default::default(),
col_entity_path: Default::default(),
columns: Default::default(),
}
}
/// Builds a new `DataTable` from an iterable of [`DataRow`]s.
pub fn from_rows(table_id: TableId, rows: impl IntoIterator<Item = DataRow>) -> Self {
re_tracing::profile_function!();
let rows = rows.into_iter();
// Explode all rows into columns, and keep track of which components are involved.
let mut components = IntSet::default();
#[allow(clippy::type_complexity)]
let (col_row_id, col_timepoint, col_entity_path, column): (
RowIdVec,
TimePointVec,
EntityPathVec,
Vec<_>,
) = rows
.map(|row| {
components.extend(row.component_names());
let DataRow {
row_id,
timepoint,
entity_path,
cells,
} = row;
(row_id, timepoint, entity_path, cells)
})
.multiunzip();
// All time columns.
let mut col_timelines: BTreeMap<Timeline, TimeOptVec> = BTreeMap::default();
for (i, timepoint) in col_timepoint.iter().enumerate() {
for (timeline, time) in timepoint.iter() {
match col_timelines.entry(*timeline) {
std::collections::btree_map::Entry::Vacant(entry) => {
entry
.insert(vec![None; i].into())
.push_back(Some(time.as_i64()));
}
std::collections::btree_map::Entry::Occupied(mut entry) => {
let entry = entry.get_mut();
entry.push_back(Some(time.as_i64()));
}
}
}
// handle potential sparseness
for (timeline, col_time) in &mut col_timelines {
if timepoint.get(timeline).is_none() {
col_time.push_back(None);
}
}
}
// Pre-allocate all columns (one per component).
let mut columns = BTreeMap::default();
for component in components {
columns.insert(component, DataCellColumn(vec![None; column.len()].into()));
}
// Fill all columns (where possible: data is likely sparse).
for (i, cells) in column.into_iter().enumerate() {
for cell in cells.0 {
let component = cell.component_name();
// NOTE: unwrap cannot fail, all arrays pre-allocated above.
columns.get_mut(&component).unwrap()[i] = Some(cell);
}
}
Self {
table_id,
col_row_id,
col_timelines,
col_entity_path,
columns,
}
}
}
impl DataTable {
#[inline]
pub fn num_rows(&self) -> u32 {
self.col_row_id.len() as _
}
/// Fails if any row has two or more cells share the same component type.
#[inline]
pub fn to_rows(&self) -> impl ExactSizeIterator<Item = DataReadResult<DataRow>> + '_ {
let num_rows = self.num_rows() as usize;
let Self {
table_id: _,
col_row_id,
col_timelines,
col_entity_path,
columns,
} = self;
(0..num_rows).map(move |i| {
let cells = columns
.values()
.filter_map(|rows| rows[i].clone() /* shallow */);
DataRow::from_cells(
col_row_id[i],
TimePoint::from(
col_timelines
.iter()
.filter_map(|(timeline, times)| {
times[i].map(|time| (*timeline, crate::TimeInt::new_temporal(time)))
})
.collect::<BTreeMap<_, _>>(),
),
col_entity_path[i].clone(),
cells,
)
})
}
/// Computes the maximum value for each and every timeline present across this entire table,
/// and returns the corresponding [`TimePoint`].
#[inline]
pub fn timepoint_max(&self) -> TimePoint {
let mut timepoint = TimePoint::default();
for (timeline, col_time) in &self.col_timelines {
let time = col_time
.iter()
.flatten()
.max()
.copied()
.map(crate::TimeInt::new_temporal);
if let Some(time) = time {
timepoint.insert(*timeline, time);
}
}
timepoint
}
/// Compute and cache the total (heap) allocated size of each individual underlying
/// [`DataCell`].
/// This does nothing for cells whose size has already been computed and cached before.
///
/// Beware: this is _very_ costly!
#[inline]
pub fn compute_all_size_bytes(&mut self) {
re_tracing::profile_function!();
for column in self.columns.values_mut() {
column.compute_all_size_bytes();
}
}
}
impl SizeBytes for DataTable {
#[inline]
fn heap_size_bytes(&self) -> u64 {
let Self {
table_id,
col_row_id,
col_timelines,
col_entity_path,
columns,
} = self;
table_id.heap_size_bytes()
+ col_row_id.heap_size_bytes()
+ col_timelines.heap_size_bytes()
+ col_entity_path.heap_size_bytes()
+ columns.heap_size_bytes()
}
}
// --- Serialization ---
use arrow2::{
array::{Array, ListArray, PrimitiveArray},
bitmap::Bitmap,
chunk::Chunk,
datatypes::{DataType, Field, Schema, TimeUnit},
offset::Offsets,
types::NativeType,
};
pub const METADATA_KIND: &str = "rerun.kind";
pub const METADATA_KIND_DATA: &str = "data";
pub const METADATA_KIND_CONTROL: &str = "control";
pub const METADATA_KIND_TIME: &str = "time";
impl DataTable {
/// Serializes the entire table into an arrow payload and schema.
///
/// A serialized `DataTable` contains two kinds of columns: control & data.
///
/// * Control columns are those that drive the behavior of the storage systems.
/// They are always present, always dense, and always deserialized upon reception by the
/// server.
/// Internally, time columns are (de)serialized separately from the rest of the control
/// columns for efficiency/QOL concerns: that doesn't change the fact that they are control
/// columns all the same!
/// * Data columns are the ones that hold component data.
/// They are optional, potentially sparse, and never deserialized on the server-side (not by
/// the storage systems, at least).
pub fn serialize(&self) -> DataTableResult<(Schema, Chunk<Box<dyn Array>>)> {
re_tracing::profile_function!();
let mut schema = Schema::default();
let mut columns = Vec::new();
{
let (control_schema, control_columns) = self.serialize_time_columns();
schema.fields.extend(control_schema.fields);
schema.metadata.extend(control_schema.metadata);
columns.extend(control_columns);
}
{
let (control_schema, control_columns) = self.serialize_control_columns()?;
schema.fields.extend(control_schema.fields);
schema.metadata.extend(control_schema.metadata);
columns.extend(control_columns);
}
{
let (data_schema, data_columns) = self.serialize_data_columns()?;
schema.fields.extend(data_schema.fields);
schema.metadata.extend(data_schema.metadata);
columns.extend(data_columns);
}
Ok((schema, Chunk::new(columns)))
}
/// Serializes all time columns into an arrow payload and schema.
fn serialize_time_columns(&self) -> (Schema, Vec<Box<dyn Array>>) {
re_tracing::profile_function!();
fn serialize_time_column(
timeline: Timeline,
times: &TimeOptVec,
) -> (Field, Box<dyn Array>) {
let data = DataTable::serialize_primitive_deque_opt(times).to(timeline.datatype());
let field = Field::new(timeline.name().as_str(), data.data_type().clone(), false)
.with_metadata([(METADATA_KIND.to_owned(), METADATA_KIND_TIME.to_owned())].into());
(field, data.boxed())
}
let Self {
table_id: _,
col_row_id: _,
col_timelines,
col_entity_path: _,
columns: _,
} = self;
let mut schema = Schema::default();
let mut columns = Vec::new();
for (timeline, col_time) in col_timelines {
let (time_field, time_column) = serialize_time_column(*timeline, col_time);
schema.fields.push(time_field);
columns.push(time_column);
}
(schema, columns)
}
/// Serializes all controls columns into an arrow payload and schema.
///
/// Control columns are those that drive the behavior of the storage systems.
/// They are always present, always dense, and always deserialized upon reception by the
/// server.
fn serialize_control_columns(&self) -> DataTableResult<(Schema, Vec<Box<dyn Array>>)> {
re_tracing::profile_function!();
let Self {
table_id,
col_row_id,
col_timelines: _,
col_entity_path,
columns: _,
} = self;
let mut schema = Schema::default();
let mut columns = Vec::new();
let (row_id_field, row_id_column) = Self::serialize_control_column(col_row_id)?;
schema.fields.push(row_id_field);
columns.push(row_id_column);
let (entity_path_field, entity_path_column) =
Self::serialize_control_column(col_entity_path)?;
schema.fields.push(entity_path_field);
columns.push(entity_path_column);
schema.metadata = [(TableId::name().to_string(), table_id.to_string())].into();
Ok((schema, columns))
}
/// Serializes a single control column: an iterable of dense arrow-like data.
pub fn serialize_control_column<'a, C: re_types_core::Component + 'a>(
values: &'a VecDeque<C>,
) -> DataTableResult<(Field, Box<dyn Array>)>
where
std::borrow::Cow<'a, C>: std::convert::From<&'a C>,
{
re_tracing::profile_function!();
let data: Box<dyn Array> = C::to_arrow(values)?;
// TODO(#3360): rethink our extension and metadata usage
let mut field = C::arrow_field()
.with_metadata([(METADATA_KIND.to_owned(), METADATA_KIND_CONTROL.to_owned())].into());
// TODO(#3360): rethink our extension and metadata usage
if let DataType::Extension(name, _, _) = data.data_type() {
field
.metadata
.extend([("ARROW:extension:name".to_owned(), name.clone())]);
}
Ok((field, data))
}
/// Serializes a single control column; optimized path for primitive datatypes.
pub fn serialize_primitive_column<T: arrow2::types::NativeType>(
name: &str,
values: &VecDeque<T>,
datatype: Option<DataType>,
) -> (Field, Box<dyn Array>) {
re_tracing::profile_function!();
let data = DataTable::serialize_primitive_deque(values);
let datatype = datatype.unwrap_or(data.data_type().clone());
let data = data.to(datatype.clone()).boxed();
let mut field = Field::new(name, datatype.clone(), false)
.with_metadata([(METADATA_KIND.to_owned(), METADATA_KIND_CONTROL.to_owned())].into());
if let DataType::Extension(name, _, _) = datatype {
field
.metadata
.extend([("ARROW:extension:name".to_owned(), name)]);
}
(field, data)
}
/// Serializes all data columns into an arrow payload and schema.
///
/// They are optional, potentially sparse, and never deserialized on the server-side (not by
/// the storage systems, at least).
fn serialize_data_columns(&self) -> DataTableResult<(Schema, Vec<Box<dyn Array>>)> {
re_tracing::profile_function!();
let Self {
table_id: _,
col_row_id: _,
col_timelines: _,
col_entity_path: _,
columns: table,
} = self;
let mut schema = Schema::default();
let mut columns = Vec::new();
for (component, rows) in table {
// If none of the rows have any data, there's nothing to do here
// TODO(jleibs): would be nice to make serialize_data_column robust to this case
// but I'm not sure if returning an empty column is the right thing to do there.
// See: https://github.com/rerun-io/rerun/issues/2005
if rows.iter().any(|c| c.is_some()) {
let (field, column) = Self::serialize_data_column(component, rows)?;
schema.fields.push(field);
columns.push(column);
}
}
Ok((schema, columns))
}
/// Serializes a single data column.
pub fn serialize_data_column(
name: &str,
column: &VecDeque<Option<DataCell>>,
) -> DataTableResult<(Field, Box<dyn Array>)> {
re_tracing::profile_function!();
/// Create a list-array out of a flattened array of cell values.
///
/// * Before: `[C, C, C, C, C, C, C, …]`
/// * After: `ListArray[ [[C, C], [C, C, C], None, [C], [C], …] ]`
fn data_to_lists(
column: &VecDeque<Option<DataCell>>,
data: Box<dyn Array>,
ext_name: Option<String>,
) -> Box<dyn Array> {
let datatype = data.data_type().clone();
let field = {
let mut field = Field::new("item", datatype, true);
if let Some(name) = ext_name {
field
.metadata
.extend([("ARROW:extension:name".to_owned(), name)]);
}
field
};
let datatype = DataType::List(Arc::new(field));
let offsets = Offsets::try_from_lengths(column.iter().map(|cell| {
cell.as_ref()
.map_or(0, |cell| cell.num_instances() as usize)
}))
// NOTE: cannot fail, `data` has as many instances as `column`
.unwrap()
.into();
#[allow(clippy::from_iter_instead_of_collect)]
let validity = Bitmap::from_iter(column.iter().map(|cell| cell.is_some()));
ListArray::<i32>::new(datatype, offsets, data, validity.into()).boxed()
}
// TODO(cmc): All we're doing here is allocating and filling a nice contiguous array so
// our `ListArray`s can compute their indices and for the serializer to work with…
// In a far enough future, we could imagine having much finer grain control over the
// serializer and doing all of this at once, bypassing all the mem copies and
// allocations.
let cell_refs = column
.iter()
.flatten()
.map(|cell| cell.as_arrow_ref())
.collect_vec();
let ext_name = cell_refs.first().and_then(|cell| match cell.data_type() {
DataType::Extension(name, _, _) => Some(name),
_ => None,
});
// NOTE: Avoid paying for the cost of the concatenation machinery if there's a single
// row in the column.
let data = if cell_refs.len() == 1 {
data_to_lists(column, cell_refs[0].to_boxed(), ext_name.cloned())
} else {
// NOTE: This is a column of cells, it shouldn't ever fail to concatenate since
// they share the same underlying type.
let data =
arrow2::compute::concatenate::concatenate(cell_refs.as_slice()).map_err(|err| {
re_log::warn_once!("failed to concatenate cells for column {name}");
err
})?;
data_to_lists(column, data, ext_name.cloned())
};
let field = Field::new(name, data.data_type().clone(), false)
.with_metadata([(METADATA_KIND.to_owned(), METADATA_KIND_DATA.to_owned())].into());
Ok((field, data))
}
pub fn serialize_primitive_deque_opt<T: NativeType>(
data: &VecDeque<Option<T>>,
) -> PrimitiveArray<T> {
let datatype = T::PRIMITIVE.into();
let values = data
.iter()
.copied()
.map(Option::unwrap_or_default)
.collect();
let validity = data
.iter()
.any(Option::is_none)
.then(|| data.iter().map(Option::is_some).collect());
PrimitiveArray::new(datatype, values, validity)
}
pub fn serialize_primitive_deque<T: NativeType>(data: &VecDeque<T>) -> PrimitiveArray<T> {
let datatype = T::PRIMITIVE.into();
let values = data.iter().copied().collect();
PrimitiveArray::new(datatype, values, None)
}
}
impl DataTable {
/// Deserializes an entire table from an arrow payload and schema.
pub fn deserialize(
table_id: TableId,
schema: &Schema,
chunk: &Chunk<Box<dyn Array>>,
) -> DataTableResult<Self> {
re_tracing::profile_function!();
// --- Time ---
let col_timelines: DataTableResult<_> = schema
.fields
.iter()
.enumerate()
.filter_map(|(i, field)| {
field.metadata.get(METADATA_KIND).and_then(|kind| {
(kind == METADATA_KIND_TIME).then_some((field.name.as_str(), i))
})
})
.map(|(name, index)| {
chunk
.get(index)
.ok_or(DataTableError::MissingColumn(name.to_owned()))
.and_then(|column| Self::deserialize_time_column(name, &**column))
})
.collect();
let col_timelines = col_timelines?;
// --- Control ---
let control_indices: HashMap<&str, usize> = schema
.fields
.iter()
.enumerate()
.filter_map(|(i, field)| {
field.metadata.get(METADATA_KIND).and_then(|kind| {
(kind == METADATA_KIND_CONTROL).then_some((field.name.as_str(), i))
})
})
.collect();
let control_index = move |name: &str| {
control_indices
.get(name)
.copied()
.ok_or(DataTableError::MissingColumn(name.into()))
};
// NOTE: the unwrappings cannot fail since control_index() makes sure the index is valid
let col_row_id = RowId::from_arrow(
chunk
.get(control_index(RowId::name().as_str())?)
.unwrap()
.as_ref(),
)?;
let col_entity_path = EntityPath::from_arrow(
chunk
.get(control_index(EntityPath::name().as_str())?)
.unwrap()
.as_ref(),
)?;
// --- Components ---
let columns: DataTableResult<_> = schema
.fields
.iter()
.enumerate()
.filter_map(|(i, field)| {
field.metadata.get(METADATA_KIND).and_then(|kind| {
(kind == METADATA_KIND_DATA).then_some((field.name.as_str(), i))
})
})
.map(|(name, index)| {
let component: ComponentName = name.to_owned().into();
chunk
.get(index)
.ok_or(DataTableError::MissingColumn(name.to_owned()))
.and_then(|column| {
Self::deserialize_data_column(component, &**column)
.map(|data| (component, data))
})
})
.collect();
let columns = columns?;
Ok(Self {
table_id,
col_row_id: col_row_id.into(),
col_timelines,
col_entity_path: col_entity_path.into(),
columns,
})
}
/// Deserializes a sparse time column.
fn deserialize_time_column(
name: &str,
column: &dyn Array,
) -> DataTableResult<(Timeline, TimeOptVec)> {
re_tracing::profile_function!();
// See also [`Timeline::datatype`]
let timeline = match column.data_type().to_logical_type() {
DataType::Int64 => Timeline::new_sequence(name),
DataType::Timestamp(TimeUnit::Nanosecond, None) => Timeline::new_temporal(name),
_ => {
return Err(DataTableError::NotATimeColumn {
name: name.into(),
datatype: column.data_type().clone(),
})
}
};
let col_time = column
.as_any()
.downcast_ref::<PrimitiveArray<i64>>()
// NOTE: cannot fail, datatype checked above
.unwrap();
let col_time: TimeOptVec = col_time.into_iter().map(|time| time.copied()).collect();
Ok((timeline, col_time))
}
/// Deserializes a sparse data column.
fn deserialize_data_column(
component: ComponentName,
column: &dyn Array,
) -> DataTableResult<DataCellColumn> {
re_tracing::profile_function!();
Ok(DataCellColumn(
column
.as_any()
.downcast_ref::<ListArray<i32>>()
.ok_or(DataTableError::NotAColumn(component.to_string()))?
.iter()
// TODO(#3741): Schema metadata gets cloned in every single array.
// This'll become a problem as soon as we enable batching.
.map(|array| array.map(|values| DataCell::from_arrow(component, values)))
.collect(),
))
}
}
// ---
impl DataTable {
/// Deserializes the contents of an [`ArrowMsg`] into a `DataTable`.
#[inline]
pub fn from_arrow_msg(msg: &ArrowMsg) -> DataTableResult<Self> {
let ArrowMsg {
table_id,
timepoint_max: _,
schema,
chunk,
on_release: _,
} = msg;
Self::deserialize(*table_id, schema, chunk)
}
/// Serializes the contents of a `DataTable` into an [`ArrowMsg`].
//
// TODO(#1760): support serializing the cell size itself, so it can be computed on the clients.
#[inline]
pub fn to_arrow_msg(&self) -> DataTableResult<ArrowMsg> {
let timepoint_max = self.timepoint_max();
let (schema, chunk) = self.serialize()?;
Ok(ArrowMsg {
table_id: self.table_id,
timepoint_max,
schema,
chunk,
on_release: None,
})
}
}
// ---
impl std::fmt::Display for DataTable {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let (schema, columns) = self.serialize().map_err(|err| {
re_log::error_once!("couldn't display data table: {err}");
std::fmt::Error
})?;
writeln!(f, "DataTable({}):", self.table_id)?;
re_format_arrow::format_table(
columns.columns(),
schema.fields.iter().map(|field| field.name.as_str()),
)
.fmt(f)
}
}
impl DataTable {
/// Checks whether two [`DataTable`]s are _similar_, i.e. not equal on a byte-level but
/// functionally equivalent.
///
/// Returns `Ok(())` if they match, or an error containing a detailed diff otherwise.
pub fn similar(table1: &DataTable, table2: &DataTable) -> anyhow::Result<()> {
/// Given a [`DataTable`], returns all of its rows grouped by timeline.
fn compute_rows(table: &DataTable) -> anyhow::Result<HashMap<Timeline, Vec<DataRow>>> {
let mut rows_by_timeline: HashMap<Timeline, Vec<DataRow>> = Default::default();
for row in table.to_rows() {
let row = row?;
for (&timeline, &time) in row.timepoint.iter() {
let mut row = row.clone();
row.timepoint = TimePoint::from([(timeline, time)]);
rows_by_timeline.entry(timeline).or_default().push(row);
}
}
Ok(rows_by_timeline)
}
let mut rows_by_timeline1 = compute_rows(table1)?;
let mut rows_by_timeline2 = compute_rows(table2)?;
for timeline1 in rows_by_timeline1.keys() {
anyhow::ensure!(
rows_by_timeline2.contains_key(timeline1),
"timeline {timeline1:?} was present in the first rrd file but not in the second",
);
}
for timeline2 in rows_by_timeline2.keys() {
anyhow::ensure!(
rows_by_timeline1.contains_key(timeline2),
"timeline {timeline2:?} was present in the second rrd file but not in the first",
);
}
// NOTE: Can't compare `log_time`, by definition.
rows_by_timeline1.remove(&Timeline::log_time());
rows_by_timeline2.remove(&Timeline::log_time());
for (timeline, rows1) in &mut rows_by_timeline1 {
let rows2 = rows_by_timeline2.get_mut(timeline).unwrap(); // safe
// NOTE: We need both sets of rows to follow a common natural order for the comparison
// to make sense.
rows1.sort_by_key(|row| (row.timepoint.clone(), row.row_id));
rows2.sort_by_key(|row| (row.timepoint.clone(), row.row_id));
anyhow::ensure!(
rows1.len() == rows2.len(),
"rrd files yielded different number of datastore rows for timeline {timeline:?}: {} vs. {}",
rows1.len(),
rows2.len()
);
for (ri, (row1, row2)) in rows1.iter().zip(rows2).enumerate() {
let DataRow {
row_id: _,
timepoint: timepoint1,
entity_path: entity_path1,
cells: ref cells1,
} = row1;
let DataRow {
row_id: _,
timepoint: timepoint2,
entity_path: entity_path2,
cells: ref cells2,
} = row2;
for (c1, c2) in izip!(&cells1.0, &cells2.0) {
if c1 != c2 {
anyhow::ensure!(
c1.datatype() == c2.datatype(),
"Found discrepancy in row #{ri}: cells' datatypes don't match!\n{}",
similar_asserts::SimpleDiff::from_str(
&format!("{:?}:{:?}", c1.component_name(), c1.datatype()),
&format!("{:?}:{:?}", c2.component_name(), c2.datatype()),
"cell1",
"cell2"
)
);
let arr1 = c1.as_arrow_ref();
let arr2 = c2.as_arrow_ref();
if let (Some(arr1), Some(arr2)) = (
arr1.as_any().downcast_ref::<arrow2::array::UnionArray>(),
arr2.as_any().downcast_ref::<arrow2::array::UnionArray>(),
) {
anyhow::ensure!(
arr1.validity() == arr2.validity(),
"Found discrepancy in row #{ri}: union arrays' validity bitmaps don't match!\n{}\n{}",
similar_asserts::SimpleDiff::from_str(&row1.to_string(), &row2.to_string(), "row1", "row2"),
similar_asserts::SimpleDiff::from_str(
&format!("{:?}", arr1.validity()),
&format!("{:?}", arr2.validity()),
"cell1",
"cell2"
)
);
anyhow::ensure!(
arr1.types() == arr2.types(),
"Found discrepancy in row #{ri}: union arrays' type indices don't match!\n{}\n{}",
similar_asserts::SimpleDiff::from_str(&row1.to_string(), &row2.to_string(), "row1", "row2"),
similar_asserts::SimpleDiff::from_str(
&format!("{:?}", arr1.types()),
&format!("{:?}", arr2.types()),
"cell1",
"cell2"
)
);
anyhow::ensure!(
arr1.offsets() == arr2.offsets(),
"Found discrepancy in row #{ri}: union arrays' offsets don't match!\n{}\n{}",
similar_asserts::SimpleDiff::from_str(&row1.to_string(), &row2.to_string(), "row1", "row2"),
similar_asserts::SimpleDiff::from_str(
&format!("{:?}", arr1.offsets()),
&format!("{:?}", arr2.offsets()),
"cell1",
"cell2"
)
);
}
}
}
let mut size_mismatches = vec![];
for (c1, c2) in izip!(&cells1.0, &cells2.0) {
if c1.total_size_bytes() != c2.total_size_bytes() {
size_mismatches.push(format!(
"Sizes don't match! {} ({}) vs. {} ({}) bytes. Perhaps the validity differs?",
c1.total_size_bytes(),
c1.component_name(),
c2.total_size_bytes(),
c2.component_name(),
));
fn cell_to_bytes(cell: DataCell) -> Vec<u8> {
let row = DataRow::from_cells1(
RowId::ZERO,
"cell",
TimePoint::default(),
cell,
)
.unwrap();
let table = DataTable::from_rows(TableId::ZERO, [row]);
let msg = table.to_arrow_msg().unwrap();
use arrow2::io::ipc::write::StreamWriter;
let mut buf = Vec::<u8>::new();
let mut writer = StreamWriter::new(&mut buf, Default::default());
writer.start(&msg.schema, None).unwrap();
writer.write(&msg.chunk, None).unwrap();
writer.finish().unwrap();
buf
}
let c1_bytes = cell_to_bytes(c1.clone());
let c2_bytes = cell_to_bytes(c2.clone());
size_mismatches.push(format!(
"IPC size is {} vs {} bytes",
c1_bytes.len(),
c2_bytes.len()
));
if c1_bytes.len().max(c2_bytes.len()) < 300 {
size_mismatches.push(
similar_asserts::SimpleDiff::from_str(
&format!("{c1_bytes:#?}"),
&format!("{c2_bytes:#?}"),
"cell1_ipc",
"cell2_ipc",
)
.to_string(),
);
}
}
}
anyhow::ensure!(
timepoint1 == timepoint2 && entity_path1 == entity_path2 && cells1 == cells2,
"Found discrepancy in row #{ri}:\n{}\n{}\
\n\nrow1:\n{row1}
\n\nrow2:\n{row2}",
similar_asserts::SimpleDiff::from_str(
&row1.to_string(),
&row2.to_string(),
"row1",
"row2"
),
size_mismatches.join("\n"),
);
}
}
Ok(())
}
}
// ---
/// Crafts a simple but interesting [`DataTable`].
#[cfg(not(target_arch = "wasm32"))]
impl DataTable {
pub fn example(timeless: bool) -> DataTable {
use crate::{
example_components::{MyColor, MyLabel, MyPoint},
Time,
};
let table_id = TableId::new();
let mut tick = 0i64;
let mut timepoint = |frame_nr: i64| {
let mut tp = TimePoint::default();
if !timeless {
tp.insert(Timeline::log_time(), Time::now());
tp.insert(Timeline::log_tick(), tick);
tp.insert(Timeline::new_sequence("frame_nr"), frame_nr);
}
tick += 1;
tp
};
let row0 = {
let positions: &[MyPoint] = &[MyPoint::new(10.0, 10.0), MyPoint::new(20.0, 20.0)];
let colors: &[_] = &[MyColor(0x8080_80FF)];
let labels: &[MyLabel] = &[];
DataRow::from_cells3(RowId::new(), "a", timepoint(1), (positions, colors, labels))
.unwrap()
};
let row1 = {
let colors: &[MyColor] = &[];
DataRow::from_cells1(RowId::new(), "b", timepoint(1), colors).unwrap()
};
let row2 = {
let colors: &[_] = &[MyColor(0xFFFF_FFFF)];
let labels: &[_] = &[MyLabel("hey".into())];
DataRow::from_cells2(RowId::new(), "c", timepoint(2), (colors, labels)).unwrap()
};
let mut table = DataTable::from_rows(table_id, [row0, row1, row2]);
table.compute_all_size_bytes();
table
}
}