1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
use crate::io::interest::Interest;
use crate::runtime::io::Registration;
use crate::runtime::scheduler;

use mio::event::Source;
use std::fmt;
use std::io;
use std::ops::Deref;
use std::panic::{RefUnwindSafe, UnwindSafe};

cfg_io_driver! {
    /// Associates an I/O resource that implements the [`std::io::Read`] and/or
    /// [`std::io::Write`] traits with the reactor that drives it.
    ///
    /// `PollEvented` uses [`Registration`] internally to take a type that
    /// implements [`mio::event::Source`] as well as [`std::io::Read`] and/or
    /// [`std::io::Write`] and associate it with a reactor that will drive it.
    ///
    /// Once the [`mio::event::Source`] type is wrapped by `PollEvented`, it can be
    /// used from within the future's execution model. As such, the
    /// `PollEvented` type provides [`AsyncRead`] and [`AsyncWrite`]
    /// implementations using the underlying I/O resource as well as readiness
    /// events provided by the reactor.
    ///
    /// **Note**: While `PollEvented` is `Sync` (if the underlying I/O type is
    /// `Sync`), the caller must ensure that there are at most two tasks that
    /// use a `PollEvented` instance concurrently. One for reading and one for
    /// writing. While violating this requirement is "safe" from a Rust memory
    /// model point of view, it will result in unexpected behavior in the form
    /// of lost notifications and tasks hanging.
    ///
    /// ## Readiness events
    ///
    /// Besides just providing [`AsyncRead`] and [`AsyncWrite`] implementations,
    /// this type also supports access to the underlying readiness event stream.
    /// While similar in function to what [`Registration`] provides, the
    /// semantics are a bit different.
    ///
    /// Two functions are provided to access the readiness events:
    /// [`poll_read_ready`] and [`poll_write_ready`]. These functions return the
    /// current readiness state of the `PollEvented` instance. If
    /// [`poll_read_ready`] indicates read readiness, immediately calling
    /// [`poll_read_ready`] again will also indicate read readiness.
    ///
    /// When the operation is attempted and is unable to succeed due to the I/O
    /// resource not being ready, the caller must call [`clear_readiness`].
    /// This clears the readiness state until a new readiness event is received.
    ///
    /// This allows the caller to implement additional functions. For example,
    /// [`TcpListener`] implements `poll_accept` by using [`poll_read_ready`] and
    /// [`clear_readiness`].
    ///
    /// ## Platform-specific events
    ///
    /// `PollEvented` also allows receiving platform-specific `mio::Ready` events.
    /// These events are included as part of the read readiness event stream. The
    /// write readiness event stream is only for `Ready::writable()` events.
    ///
    /// [`AsyncRead`]: crate::io::AsyncRead
    /// [`AsyncWrite`]: crate::io::AsyncWrite
    /// [`TcpListener`]: crate::net::TcpListener
    /// [`clear_readiness`]: Registration::clear_readiness
    /// [`poll_read_ready`]: Registration::poll_read_ready
    /// [`poll_write_ready`]: Registration::poll_write_ready
    pub(crate) struct PollEvented<E: Source> {
        io: Option<E>,
        registration: Registration,
    }
}

// ===== impl PollEvented =====

impl<E: Source> PollEvented<E> {
    /// Creates a new `PollEvented` associated with the default reactor.
    ///
    /// The returned `PollEvented` has readable and writable interests. For more control, use
    /// [`Self::new_with_interest`].
    ///
    /// # Panics
    ///
    /// This function panics if thread-local runtime is not set.
    ///
    /// The runtime is usually set implicitly when this function is called
    /// from a future driven by a tokio runtime, otherwise runtime can be set
    /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
    #[track_caller]
    #[cfg_attr(feature = "signal", allow(unused))]
    pub(crate) fn new(io: E) -> io::Result<Self> {
        PollEvented::new_with_interest(io, Interest::READABLE | Interest::WRITABLE)
    }

    /// Creates a new `PollEvented` associated with the default reactor, for
    /// specific `Interest` state. `new_with_interest` should be used over `new`
    /// when you need control over the readiness state, such as when a file
    /// descriptor only allows reads. This does not add `hup` or `error` so if
    /// you are interested in those states, you will need to add them to the
    /// readiness state passed to this function.
    ///
    /// # Panics
    ///
    /// This function panics if thread-local runtime is not set.
    ///
    /// The runtime is usually set implicitly when this function is called from
    /// a future driven by a tokio runtime, otherwise runtime can be set
    /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter)
    /// function.
    #[track_caller]
    #[cfg_attr(feature = "signal", allow(unused))]
    pub(crate) fn new_with_interest(io: E, interest: Interest) -> io::Result<Self> {
        Self::new_with_interest_and_handle(io, interest, scheduler::Handle::current())
    }

    #[track_caller]
    pub(crate) fn new_with_interest_and_handle(
        mut io: E,
        interest: Interest,
        handle: scheduler::Handle,
    ) -> io::Result<Self> {
        let registration = Registration::new_with_interest_and_handle(&mut io, interest, handle)?;
        Ok(Self {
            io: Some(io),
            registration,
        })
    }

    /// Returns a reference to the registration.
    #[cfg(feature = "net")]
    pub(crate) fn registration(&self) -> &Registration {
        &self.registration
    }

    /// Deregisters the inner io from the registration and returns a Result containing the inner io.
    #[cfg(any(feature = "net", feature = "process"))]
    pub(crate) fn into_inner(mut self) -> io::Result<E> {
        let mut inner = self.io.take().unwrap(); // As io shouldn't ever be None, just unwrap here.
        self.registration.deregister(&mut inner)?;
        Ok(inner)
    }

    #[cfg(all(feature = "process", target_os = "linux"))]
    pub(crate) fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        self.registration
            .poll_read_ready(cx)
            .map_err(io::Error::from)
            .map_ok(|_| ())
    }

    /// Re-register under new runtime with `interest`.
    #[cfg(all(feature = "process", target_os = "linux"))]
    pub(crate) fn reregister(&mut self, interest: Interest) -> io::Result<()> {
        let io = self.io.as_mut().unwrap(); // As io shouldn't ever be None, just unwrap here.
        let _ = self.registration.deregister(io);
        self.registration =
            Registration::new_with_interest_and_handle(io, interest, scheduler::Handle::current())?;

        Ok(())
    }
}

feature! {
    #![any(feature = "net", all(unix, feature = "process"))]

    use crate::io::ReadBuf;
    use std::task::{Context, Poll};

    impl<E: Source> PollEvented<E> {
        // Safety: The caller must ensure that `E` can read into uninitialized memory
        pub(crate) unsafe fn poll_read<'a>(
            &'a self,
            cx: &mut Context<'_>,
            buf: &mut ReadBuf<'_>,
        ) -> Poll<io::Result<()>>
        where
            &'a E: io::Read + 'a,
        {
            use std::io::Read;

            loop {
                let evt = ready!(self.registration.poll_read_ready(cx))?;

                let b = &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]);
                let len = b.len();

                match self.io.as_ref().unwrap().read(b) {
                    Ok(n) => {
                        // if we read a partially full buffer, this is sufficient on unix to show
                        // that the socket buffer has been drained.  Unfortunately this assumption
                        // fails for level-triggered selectors (like on Windows or poll even for
                        // UNIX): https://github.com/tokio-rs/tokio/issues/5866
                        if n > 0 && (!cfg!(windows) && !cfg!(mio_unsupported_force_poll_poll) && n < len) {
                            self.registration.clear_readiness(evt);
                        }

                        // Safety: We trust `TcpStream::read` to have filled up `n` bytes in the
                        // buffer.
                        buf.assume_init(n);
                        buf.advance(n);
                        return Poll::Ready(Ok(()));
                    },
                    Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
                        self.registration.clear_readiness(evt);
                    }
                    Err(e) => return Poll::Ready(Err(e)),
                }
            }
        }

        pub(crate) fn poll_write<'a>(&'a self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>>
        where
            &'a E: io::Write + 'a,
        {
            use std::io::Write;

            loop {
                let evt = ready!(self.registration.poll_write_ready(cx))?;

                match self.io.as_ref().unwrap().write(buf) {
                    Ok(n) => {
                        // if we write only part of our buffer, this is sufficient on unix to show
                        // that the socket buffer is full.  Unfortunately this assumption
                        // fails for level-triggered selectors (like on Windows or poll even for
                        // UNIX): https://github.com/tokio-rs/tokio/issues/5866
                        if n > 0 && (!cfg!(windows) && !cfg!(mio_unsupported_force_poll_poll) && n < buf.len()) {
                            self.registration.clear_readiness(evt);
                        }

                        return Poll::Ready(Ok(n));
                    },
                    Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
                        self.registration.clear_readiness(evt);
                    }
                    Err(e) => return Poll::Ready(Err(e)),
                }
            }
        }

        #[cfg(any(feature = "net", feature = "process"))]
        pub(crate) fn poll_write_vectored<'a>(
            &'a self,
            cx: &mut Context<'_>,
            bufs: &[io::IoSlice<'_>],
        ) -> Poll<io::Result<usize>>
        where
            &'a E: io::Write + 'a,
        {
            use std::io::Write;
            self.registration.poll_write_io(cx, || self.io.as_ref().unwrap().write_vectored(bufs))
        }
    }
}

impl<E: Source> UnwindSafe for PollEvented<E> {}

impl<E: Source> RefUnwindSafe for PollEvented<E> {}

impl<E: Source> Deref for PollEvented<E> {
    type Target = E;

    fn deref(&self) -> &E {
        self.io.as_ref().unwrap()
    }
}

impl<E: Source + fmt::Debug> fmt::Debug for PollEvented<E> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("PollEvented").field("io", &self.io).finish()
    }
}

impl<E: Source> Drop for PollEvented<E> {
    fn drop(&mut self) {
        if let Some(mut io) = self.io.take() {
            // Ignore errors
            let _ = self.registration.deregister(&mut io);
        }
    }
}