1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// Copyright 2016 - 2021 Ulrik Sverdrup "bluss"
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use crate::archparam;
use crate::packing::pack;

/// General matrix multiply kernel
pub(crate) trait GemmKernel {
    type Elem: Element;

    /// Kernel rows
    const MR: usize = Self::MRTy::VALUE;
    /// Kernel cols
    const NR: usize = Self::NRTy::VALUE;
    /// Kernel rows as const num type
    type MRTy: ConstNum;
    /// Kernel cols as const num type
    type NRTy: ConstNum;

    /// align inputs to this
    fn align_to() -> usize;

    /// Whether to always use the masked wrapper around the kernel.
    fn always_masked() -> bool;

    // These should ideally be tuned per kernel and per microarch
    #[inline(always)]
    fn nc() -> usize { archparam::S_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::S_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::S_MC }

    /// Pack matrix A into its packing buffer.
    ///
    /// See pack for more documentation.
    ///
    /// Override only if the default packing function does not
    /// use the right layout.
    #[inline]
    unsafe fn pack_mr(kc: usize, mc: usize, pack_buf: &mut [Self::Elem],
                      a: *const Self::Elem, rsa: isize, csa: isize)
    {
        pack::<Self::MRTy, _>(kc, mc, pack_buf, a, rsa, csa)
    }

    /// Pack matrix B into its packing buffer
    ///
    /// See pack for more documentation.
    ///
    /// Override only if the default packing function does not
    /// use the right layout.
    #[inline]
    unsafe fn pack_nr(kc: usize, mc: usize, pack_buf: &mut [Self::Elem],
                      a: *const Self::Elem, rsa: isize, csa: isize)
    {
        pack::<Self::NRTy, _>(kc, mc, pack_buf, a, rsa, csa)
    }


    /// Matrix multiplication kernel
    ///
    /// This does the matrix multiplication:
    ///
    /// C ← α A B + β C
    ///
    /// + `k`: length of data in a, b
    /// + a, b are packed
    /// + c has general strides
    /// + rsc: row stride of c
    /// + csc: col stride of c
    /// + `alpha`: scaling factor for A B product
    /// + `beta`: scaling factor for c.
    ///   Note: if `beta` is `0.`, the kernel should not (and must not)
    ///   read from c, its value is to be treated as if it was zero.
    ///
    /// When masked, the kernel is always called with β=0 but α is passed
    /// as usual. (This is only useful information if you return `true` from
    /// `always_masked`.)
    unsafe fn kernel(
        k: usize,
        alpha: Self::Elem,
        a: *const Self::Elem,
        b: *const Self::Elem,
        beta: Self::Elem,
        c: *mut Self::Elem, rsc: isize, csc: isize);
}

pub(crate) trait Element : Copy + Send + Sync {
    fn zero() -> Self;
    fn one() -> Self;
    fn test_value() -> Self;
    fn is_zero(&self) -> bool;
    fn add_assign(&mut self, rhs: Self);
    fn mul_assign(&mut self, rhs: Self);
}

impl Element for f32 {
    fn zero() -> Self { 0. }
    fn one() -> Self { 1. }
    fn test_value() -> Self { 1. }
    fn is_zero(&self) -> bool { *self == 0. }
    fn add_assign(&mut self, rhs: Self) { *self += rhs; }
    fn mul_assign(&mut self, rhs: Self) { *self *= rhs; }
}

impl Element for f64 {
    fn zero() -> Self { 0. }
    fn one() -> Self { 1. }
    fn test_value() -> Self { 1. }
    fn is_zero(&self) -> bool { *self == 0. }
    fn add_assign(&mut self, rhs: Self) { *self += rhs; }
    fn mul_assign(&mut self, rhs: Self) { *self *= rhs; }
}

/// Kernel selector
pub(crate) trait GemmSelect<T> {
    /// Call `select` with the selected kernel for this configuration
    fn select<K>(self, kernel: K)
        where K: GemmKernel<Elem=T>,
              T: Element;
}

#[cfg(feature = "cgemm")]
#[allow(non_camel_case_types)]
pub(crate) type c32 = [f32; 2];

#[cfg(feature = "cgemm")]
#[allow(non_camel_case_types)]
pub(crate) type c64 = [f64; 2];

#[cfg(feature = "cgemm")]
impl Element for c32 {
    fn zero() -> Self { [0., 0.] }
    fn one() -> Self { [1., 0.] }
    fn test_value() -> Self { [2., 1.] }
    fn is_zero(&self) -> bool { *self == [0., 0.] }

    #[inline(always)]
    fn add_assign(&mut self, y: Self) {
        self[0] += y[0];
        self[1] += y[1];
    }

    #[inline(always)]
    fn mul_assign(&mut self, rhs: Self) {
        *self = c32_mul(*self, rhs);
    }
}

#[cfg(feature = "cgemm")]
impl Element for c64 {
    fn zero() -> Self { [0., 0.] }
    fn one() -> Self { [1., 0.] }
    fn test_value() -> Self { [2., 1.] }
    fn is_zero(&self) -> bool { *self == [0., 0.] }

    #[inline(always)]
    fn add_assign(&mut self, y: Self) {
        self[0] += y[0];
        self[1] += y[1];
    }

    #[inline(always)]
    fn mul_assign(&mut self, rhs: Self) {
        *self = c64_mul(*self, rhs);
    }
}

#[cfg(feature = "cgemm")]
#[inline(always)]
pub(crate) fn c32_mul(x: c32, y: c32) -> c32 {
    let [a, b] = x;
    let [c, d] = y;
    [a * c - b * d, b * c + a * d]
}

#[cfg(feature = "cgemm")]
#[inline(always)]
pub(crate) fn c64_mul(x: c64, y: c64) -> c64 {
    let [a, b] = x;
    let [c, d] = y;
    [a * c - b * d, b * c + a * d]
}


pub(crate) trait ConstNum {
    const VALUE: usize;
}

#[cfg(feature = "cgemm")]
pub(crate) struct U2;
pub(crate) struct U4;
pub(crate) struct U8;

#[cfg(feature = "cgemm")]
impl ConstNum for U2 { const VALUE: usize = 2; }
impl ConstNum for U4 { const VALUE: usize = 4; }
impl ConstNum for U8 { const VALUE: usize = 8; }


#[cfg(test)]
pub(crate) mod test {
    use std::fmt;

    use super::GemmKernel;
    use super::Element;
    use crate::aligned_alloc::Alloc;

    pub(crate) fn aligned_alloc<K>(elt: K::Elem, n: usize) -> Alloc<K::Elem>
        where K: GemmKernel,
              K::Elem: Copy,
    {
        unsafe {
            Alloc::new(n, K::align_to()).init_with(elt)
        }
    }

    /// Assert that we can compute A I == A and I B == B for the kernel (truncated, if needed)
    ///
    /// Tests C col major and row major
    /// Tests beta == 0 (and no other option)
    pub(crate) fn test_a_kernel<K, T>(_name: &str)
    where
        K: GemmKernel<Elem = T>,
        T: Element + fmt::Debug + PartialEq,
    {
        const K: usize = 16;
        let mr = K::MR;
        let nr = K::NR;

        // 1. Test A I == A (variables a, b, c)
        // b looks like an identity matrix (truncated, depending on MR/NR)

        let mut a = aligned_alloc::<K>(T::zero(), mr * K);
        let mut b = aligned_alloc::<K>(T::zero(), nr * K);

        let mut count = 1;
        for i in 0..mr {
            for j in 0..K {
                for _ in 0..count {
                    a[i * K + j].add_assign(T::test_value());
                }
                count += 1;
            }
        }

        for i in 0..Ord::min(K, nr) {
            b[i + i * nr] = T::one();
        }

        let mut c = vec![T::zero(); mr * nr];
        unsafe {
            // col major C
            K::kernel(K, T::one(), a.as_ptr(), b.as_ptr(), T::zero(), c.as_mut_ptr(), 1, mr as isize);
        }
        let common_len = Ord::min(a.len(), c.len());
        assert_eq!(&a[..common_len], &c[..common_len]);

        // 2. Test I B == B (variables a, b, c)
        // a looks like an identity matrix (truncated, depending on MR/NR)

        let mut a = aligned_alloc::<K>(T::zero(), mr * K);
        let mut b = aligned_alloc::<K>(T::zero(), nr * K);

        for i in 0..Ord::min(K, mr) {
            a[i + i * mr] = T::one();
        }

        let mut count = 1;
        for i in 0..K {
            for j in 0..nr {
                for _ in 0..count {
                    b[i * nr + j].add_assign(T::test_value());
                }
                count += 1;
            }
        }

        let mut c = vec![T::zero(); mr * nr];
        unsafe {
            // row major C
            K::kernel(K, T::one(), a.as_ptr(), b.as_ptr(), T::zero(), c.as_mut_ptr(), nr as isize, 1);
        }
        let common_len = Ord::min(b.len(), c.len());
        assert_eq!(&b[..common_len], &c[..common_len]);
    }

    #[cfg(feature="cgemm")]
    /// Assert that we can compute A I == A for the kernel (truncated, if needed)
    ///
    /// Tests C col major and row major
    /// Tests beta == 0 (and no other option)
    pub(crate) fn test_complex_packed_kernel<K, T, TReal>(_name: &str)
    where
        K: GemmKernel<Elem = T>,
        T: Element + fmt::Debug + PartialEq,
        TReal: Element + fmt::Debug + PartialEq,
    {
        use crate::cgemm_common::pack_complex;

        const K: usize = 16;
        let mr = K::MR;
        let nr = K::NR;

        // 1. Test A I == A (variables a, b, c)
        // b looks like an identity matrix (truncated, depending on MR/NR)

        let mut a = aligned_alloc::<K>(T::zero(), mr * K);
        let mut apack = aligned_alloc::<K>(T::zero(), mr * K);
        let mut b = aligned_alloc::<K>(T::zero(), nr * K);
        let mut bpack = aligned_alloc::<K>(T::zero(), nr * K);

        let mut count = 1;
        for i in 0..mr {
            for j in 0..K {
                for _ in 0..count {
                    a[i * K + j].add_assign(T::test_value());
                }
                count += 1;
            }
        }

        for i in 0..Ord::min(K, nr) {
            b[i + i * nr] = T::one();
        }

        // unlike test_a_kernel, we need custom packing for these kernels
        unsafe {
            pack_complex::<K::MRTy, T, TReal>(K, mr, &mut apack[..], a.ptr_mut(), 1, mr as isize);
            pack_complex::<K::NRTy, T, TReal>(nr, K, &mut bpack[..], b.ptr_mut(), nr as isize, 1);
        }

        let mut c = vec![T::zero(); mr * nr];
        unsafe {
            // col major C
            K::kernel(K, T::one(), apack.as_ptr(), bpack.as_ptr(), T::zero(), c.as_mut_ptr(), 1, mr as isize);
        }
        let common_len = Ord::min(a.len(), c.len());
        assert_eq!(&a[..common_len], &c[..common_len]);
    }

}