1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
//! Decoder that will remove NAL header bytes and _Emulation Prevention_ byte
//! values from encoded NAL Units, to produce the _Raw Byte Sequence Payload_
//! (RBSP).
//!
//! The following byte sequences are not allowed to appear in a framed H264 bitstream,
//!
//! - `0x00` `0x00` `0x00`
//! - `0x00` `0x00` `0x01`
//! - `0x00` `0x00` `0x02`
//! - `0x00` `0x00` `0x03`
//!
//! therefore if these byte sequences do appear in the raw bitstream, an 'escaping' mechanism
//! (called 'emulation prevention' in the spec) is applied by adding a `0x03` byte between the
//! second and third bytes in the above sequence, resulting in the following encoded versions,
//!
//! - `0x00` `0x00` **`0x03`** `0x00`
//! - `0x00` `0x00` **`0x03`** `0x01`
//! - `0x00` `0x00` **`0x03`** `0x02`
//! - `0x00` `0x00` **`0x03`** `0x03`
//!
//! The [`ByteReader`] type will accept byte sequences that have had this encoding applied, and will
//! yield byte sequences where the encoding is removed (i.e. the decoder will replace instances of
//! the sequence `0x00 0x00 0x03` with `0x00 0x00`).
use bitstream_io::read::BitRead as _;
use std::borrow::Cow;
use std::io::BufRead;
use std::io::Read;
#[derive(Copy, Clone, Debug)]
enum ParseState {
Start,
OneZero,
TwoZero,
HeaderByte,
Three,
PostThree,
}
/// [`BufRead`] adapter which returns RBSP bytes given NAL bytes by removing
/// the NAL header and `emulation-prevention-three` bytes.
///
/// See also [module docs](self).
///
/// Typically used via a [`h264_reader::nal::Nal`]. Returns error on encountering
/// invalid byte sequences.
#[derive(Clone)]
pub struct ByteReader<R: BufRead> {
// self.inner[0..self.i] hasn't yet been emitted and is RBSP (has no
// emulation_prevention_three_bytes).
//
// self.state describes the state before self.inner[self.i].
//
// self.inner[self.i..] has yet to be examined.
inner: R,
state: ParseState,
i: usize,
/// The maximum number of bytes in a fresh chunk. Surprisingly, it's
/// significantly faster to limit this, maybe due to CPU cache effects.
max_fill: usize,
}
impl<R: BufRead> ByteReader<R> {
/// Constructs an adapter from the given [BufRead]. The NAL header byte is
/// expected to be present.
pub fn new(inner: R) -> Self {
Self {
inner,
state: ParseState::HeaderByte,
i: 0,
max_fill: 128,
}
}
/// Called when self.i == 0 only; returns false at EOF.
/// Doesn't return actual buffer contents due to borrow checker limitations;
/// caller will need to call fill_buf again.
fn try_fill_buf_slow(&mut self) -> std::io::Result<bool> {
debug_assert_eq!(self.i, 0);
let chunk = self.inner.fill_buf()?;
if chunk.is_empty() {
return Ok(false);
}
let limit = std::cmp::min(chunk.len(), self.max_fill);
while self.i < limit {
match self.state {
ParseState::Start => match memchr::memchr(0x00, &chunk[self.i..limit]) {
Some(nonzero_len) => {
self.i += nonzero_len;
self.state = ParseState::OneZero;
}
None => {
self.i = chunk.len();
break;
}
},
ParseState::OneZero => match chunk[self.i] {
0x00 => self.state = ParseState::TwoZero,
_ => self.state = ParseState::Start,
},
ParseState::TwoZero => match chunk[self.i] {
0x03 => {
self.state = ParseState::Three;
break;
}
0x00 => {
return Err(std::io::Error::new(
std::io::ErrorKind::InvalidData,
format!("invalid RBSP byte {:#x} in state {:?}", 0x00, &self.state),
))
}
_ => self.state = ParseState::Start,
},
ParseState::HeaderByte => {
debug_assert_eq!(self.i, 0);
self.inner.consume(1);
self.state = ParseState::Start;
break;
}
ParseState::Three => {
debug_assert_eq!(self.i, 0);
self.inner.consume(1);
self.state = ParseState::PostThree;
break;
}
ParseState::PostThree => match chunk[self.i] {
0x00 => self.state = ParseState::OneZero,
0x01 | 0x02 | 0x03 => self.state = ParseState::Start,
o => {
return Err(std::io::Error::new(
std::io::ErrorKind::InvalidData,
format!("invalid RBSP byte {:#x} in state {:?}", o, &self.state),
))
}
},
}
self.i += 1;
}
Ok(true)
}
}
impl<R: BufRead> Read for ByteReader<R> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
let chunk = self.fill_buf()?;
let amt = std::cmp::min(buf.len(), chunk.len());
if amt == 1 {
// Stolen from std::io::Read implementation for &[u8]:
// apparently this is faster to special-case. (And this is the
// common case for BitReader.)
buf[0] = chunk[0];
} else {
buf[..amt].copy_from_slice(&chunk[..amt]);
}
self.consume(amt);
Ok(amt)
}
}
impl<R: BufRead> BufRead for ByteReader<R> {
fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
while self.i == 0 && self.try_fill_buf_slow()? {}
Ok(&self.inner.fill_buf()?[0..self.i])
}
fn consume(&mut self, amt: usize) {
self.i = self.i.checked_sub(amt).unwrap();
self.inner.consume(amt);
}
}
/// Returns RBSP from a NAL by removing the NAL header and `emulation-prevention-three` bytes.
///
/// See also [module docs](self).
///
/// Returns error on invalid byte sequences. Returns a borrowed pointer if possible.
///
/// ```
/// # use h264_reader::rbsp::decode_nal;
/// # use std::borrow::Cow;
/// # use std::io::ErrorKind;
/// let nal_with_escape = &b"\x68\x12\x34\x00\x00\x03\x00\x86"[..];
/// assert!(matches!(
/// decode_nal(nal_with_escape).unwrap(),
/// Cow::Owned(s) if s == &b"\x12\x34\x00\x00\x00\x86"[..]));
///
/// let nal_without_escape = &b"\x68\xE8\x43\x8F\x13\x21\x30"[..];
/// assert_eq!(decode_nal(nal_without_escape).unwrap(), Cow::Borrowed(&nal_without_escape[1..]));
///
/// let invalid_nal = &b"\x68\x12\x34\x00\x00\x00\x86"[..];
/// assert_eq!(decode_nal(invalid_nal).unwrap_err().kind(), ErrorKind::InvalidData);
/// ```
pub fn decode_nal<'a>(nal_unit: &'a [u8]) -> Result<Cow<'a, [u8]>, std::io::Error> {
let mut reader = ByteReader {
inner: nal_unit,
state: ParseState::HeaderByte,
i: 0,
max_fill: usize::MAX, // to borrow if at all possible.
};
let buf = reader.fill_buf()?;
if buf.len() + 1 == nal_unit.len() {
return Ok(Cow::Borrowed(&nal_unit[1..]));
}
// Upper bound estimate; skipping the NAL header and at least one emulation prevention byte.
let mut dst = Vec::with_capacity(nal_unit.len() - 2);
loop {
let buf = reader.fill_buf()?;
if buf.is_empty() {
break;
}
dst.extend_from_slice(buf);
let len = buf.len();
reader.consume(len);
}
Ok(Cow::Owned(dst))
}
#[derive(Debug)]
pub enum BitReaderError {
ReaderError(std::io::Error),
ReaderErrorFor(&'static str, std::io::Error),
/// An Exp-Golomb-coded syntax elements value has more than 32 bits.
ExpGolombTooLarge(&'static str),
/// The stream was positioned before the final one bit on [BitRead::finish_rbsp].
RemainingData,
Unaligned,
}
pub trait BitRead {
fn read_ue(&mut self, name: &'static str) -> Result<u32, BitReaderError>;
fn read_se(&mut self, name: &'static str) -> Result<i32, BitReaderError>;
fn read_bool(&mut self, name: &'static str) -> Result<bool, BitReaderError>;
fn read_u8(&mut self, bit_count: u32, name: &'static str) -> Result<u8, BitReaderError>;
fn read_u16(&mut self, bit_count: u32, name: &'static str) -> Result<u16, BitReaderError>;
fn read_u32(&mut self, bit_count: u32, name: &'static str) -> Result<u32, BitReaderError>;
fn read_i32(&mut self, bit_count: u32, name: &'static str) -> Result<i32, BitReaderError>;
/// Returns true if positioned before the RBSP trailing bits.
///
/// This matches the definition of `more_rbsp_data()` in Rec. ITU-T H.264
/// (03/2010) section 7.2.
fn has_more_rbsp_data(&mut self, name: &'static str) -> Result<bool, BitReaderError>;
/// Consumes the reader, returning error if it's not positioned at the RBSP trailing bits.
fn finish_rbsp(self) -> Result<(), BitReaderError>;
/// Consumes the reader, returning error if this `sei_payload` message is unfinished.
///
/// This is similar to `finish_rbsp`, but SEI payloads have no trailing bits if
/// already byte-aligned.
fn finish_sei_payload(self) -> Result<(), BitReaderError>;
}
/// Reads H.264 bitstream syntax elements from an RBSP representation (no NAL
/// header byte or emulation prevention three bytes).
pub struct BitReader<R: std::io::BufRead + Clone> {
reader: bitstream_io::read::BitReader<R, bitstream_io::BigEndian>,
}
impl<R: std::io::BufRead + Clone> BitReader<R> {
pub fn new(inner: R) -> Self {
Self {
reader: bitstream_io::read::BitReader::new(inner),
}
}
/// Borrows the underlying reader if byte-aligned.
pub fn reader(&mut self) -> Option<&mut R> {
self.reader.reader()
}
}
impl<R: std::io::BufRead + Clone> BitRead for BitReader<R> {
fn read_ue(&mut self, name: &'static str) -> Result<u32, BitReaderError> {
let count = self
.reader
.read_unary1()
.map_err(|e| BitReaderError::ReaderErrorFor(name, e))?;
if count > 31 {
return Err(BitReaderError::ExpGolombTooLarge(name));
} else if count > 0 {
let val = self.read_u32(count, name)?;
Ok((1 << count) - 1 + val)
} else {
Ok(0)
}
}
fn read_se(&mut self, name: &'static str) -> Result<i32, BitReaderError> {
Ok(golomb_to_signed(self.read_ue(name)?))
}
fn read_bool(&mut self, name: &'static str) -> Result<bool, BitReaderError> {
self.reader
.read_bit()
.map_err(|e| BitReaderError::ReaderErrorFor(name, e))
}
fn read_u8(&mut self, bit_count: u32, name: &'static str) -> Result<u8, BitReaderError> {
self.reader
.read(bit_count)
.map_err(|e| BitReaderError::ReaderErrorFor(name, e))
}
fn read_u16(&mut self, bit_count: u32, name: &'static str) -> Result<u16, BitReaderError> {
self.reader
.read(bit_count)
.map_err(|e| BitReaderError::ReaderErrorFor(name, e))
}
fn read_u32(&mut self, bit_count: u32, name: &'static str) -> Result<u32, BitReaderError> {
self.reader
.read(bit_count)
.map_err(|e| BitReaderError::ReaderErrorFor(name, e))
}
fn read_i32(&mut self, bit_count: u32, name: &'static str) -> Result<i32, BitReaderError> {
self.reader
.read(bit_count)
.map_err(|e| BitReaderError::ReaderErrorFor(name, e))
}
fn has_more_rbsp_data(&mut self, name: &'static str) -> Result<bool, BitReaderError> {
let mut throwaway = self.reader.clone();
let r = (move || {
throwaway.skip(1)?;
throwaway.read_unary1()?;
Ok::<_, std::io::Error>(())
})();
match r {
Err(e) if e.kind() == std::io::ErrorKind::UnexpectedEof => Ok(false),
Err(e) => Err(BitReaderError::ReaderErrorFor(name, e)),
Ok(_) => Ok(true),
}
}
fn finish_rbsp(mut self) -> Result<(), BitReaderError> {
// The next bit is expected to be the final one bit.
if !self
.reader
.read_bit()
.map_err(|e| BitReaderError::ReaderErrorFor("finish", e))?
{
// It was a zero! Determine if we're past the end or haven't reached it yet.
match self.reader.read_unary1() {
Err(e) => return Err(BitReaderError::ReaderErrorFor("finish", e)),
Ok(_) => return Err(BitReaderError::RemainingData),
}
}
// All remaining bits in the stream must then be zeros.
match self.reader.read_unary1() {
Err(e) if e.kind() == std::io::ErrorKind::UnexpectedEof => Ok(()),
Err(e) => Err(BitReaderError::ReaderErrorFor("finish", e)),
Ok(_) => Err(BitReaderError::RemainingData),
}
}
fn finish_sei_payload(mut self) -> Result<(), BitReaderError> {
match self.reader.read_bit() {
Err(e) if e.kind() == std::io::ErrorKind::UnexpectedEof => return Ok(()),
Err(e) => return Err(BitReaderError::ReaderErrorFor("finish", e)),
Ok(false) => return Err(BitReaderError::RemainingData),
Ok(true) => {}
}
match self.reader.read_unary1() {
Err(e) if e.kind() == std::io::ErrorKind::UnexpectedEof => Ok(()),
Err(e) => Err(BitReaderError::ReaderErrorFor("finish", e)),
Ok(_) => Err(BitReaderError::RemainingData),
}
}
}
fn golomb_to_signed(val: u32) -> i32 {
let sign = (((val & 0x1) as i32) << 1) - 1;
((val >> 1) as i32 + (val & 0x1) as i32) * sign
}
#[cfg(test)]
mod tests {
use super::*;
use hex_literal::*;
use hex_slice::AsHex;
#[test]
fn byte_reader() {
let data = hex!(
"67 64 00 0A AC 72 84 44 26 84 00 00 03
00 04 00 00 03 00 CA 3C 48 96 11 80"
);
for i in 1..data.len() - 1 {
let (head, tail) = data.split_at(i);
let r = head.chain(tail);
let mut r = ByteReader::new(r);
let mut rbsp = Vec::new();
r.read_to_end(&mut rbsp).unwrap();
let expected = hex!(
"64 00 0A AC 72 84 44 26 84 00 00
00 04 00 00 00 CA 3C 48 96 11 80"
);
assert!(
rbsp == &expected[..],
"Mismatch with on split_at({}):\nrbsp {:02x}\nexpected {:02x}",
i,
rbsp.as_hex(),
expected.as_hex()
);
}
}
#[test]
fn bitreader_has_more_data() {
// Should work when the end bit is byte-aligned.
let mut reader = BitReader::new(&[0x12, 0x80][..]);
assert!(reader.has_more_rbsp_data("call 1").unwrap());
assert_eq!(reader.read_u8(8, "u8 1").unwrap(), 0x12);
assert!(!reader.has_more_rbsp_data("call 2").unwrap());
// and when it's not.
let mut reader = BitReader::new(&[0x18][..]);
assert!(reader.has_more_rbsp_data("call 3").unwrap());
assert_eq!(reader.read_u8(4, "u8 2").unwrap(), 0x1);
assert!(!reader.has_more_rbsp_data("call 4").unwrap());
// should also work when there are cabac-zero-words.
let mut reader = BitReader::new(&[0x80, 0x00, 0x00][..]);
assert!(!reader
.has_more_rbsp_data("at end with cabac-zero-words")
.unwrap());
}
#[test]
fn read_ue_overflow() {
let mut reader = BitReader::new(&[0, 0, 0, 0, 255, 255, 255, 255, 255][..]);
assert!(matches!(
reader.read_ue("test"),
Err(BitReaderError::ExpGolombTooLarge("test"))
));
}
}