1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
use std::collections::BTreeMap;
use itertools::Itertools;
use nohash_hasher::IntMap;
use parking_lot::Mutex;
use re_data_store::{
DataStore, DataStoreConfig, GarbageCollectionOptions, StoreEvent, StoreSubscriber,
};
use re_log_types::{
ApplicationId, ComponentPath, DataCell, DataRow, DataTable, DataTableResult, EntityPath,
EntityPathHash, LogMsg, ResolvedTimeRange, ResolvedTimeRangeF, RowId, SetStoreInfo, StoreId,
StoreInfo, StoreKind, TimePoint, Timeline,
};
use re_query::PromiseResult;
use re_types_core::{Archetype, Loggable};
use crate::{ClearCascade, CompactedStoreEvents, Error, TimesPerTimeline};
// ----------------------------------------------------------------------------
/// See [`insert_row_with_retries`].
const MAX_INSERT_ROW_ATTEMPTS: usize = 1_000;
/// See [`insert_row_with_retries`].
const DEFAULT_INSERT_ROW_STEP_SIZE: u64 = 100;
/// See [`GarbageCollectionOptions::time_budget`].
const DEFAULT_GC_TIME_BUDGET: std::time::Duration = std::time::Duration::from_micros(3500); // empirical
/// Inserts a [`DataRow`] into the [`DataStore`], retrying in case of duplicated `RowId`s.
///
/// Retries a maximum of `num_attempts` times if the row couldn't be inserted because of a
/// duplicated [`RowId`], bumping the [`RowId`]'s internal counter by a random number
/// (up to `step_size`) between attempts.
///
/// Returns the actual [`DataRow`] that was successfully inserted, if any.
///
/// The default value of `num_attempts` (see [`MAX_INSERT_ROW_ATTEMPTS`]) should be (way) more than
/// enough for all valid use cases.
///
/// When using this function, please add a comment explaining the rationale.
fn insert_row_with_retries(
store: &mut DataStore,
mut row: DataRow,
num_attempts: usize,
step_size: u64,
) -> re_data_store::WriteResult<StoreEvent> {
fn random_u64() -> u64 {
let mut bytes = [0_u8; 8];
getrandom::getrandom(&mut bytes).map_or(0, |_| u64::from_le_bytes(bytes))
}
for i in 0..num_attempts {
match store.insert_row(&row) {
Ok(event) => return Ok(event),
Err(re_data_store::WriteError::ReusedRowId(_)) => {
// TODO(#1894): currently we produce duplicate row-ids when hitting the "save" button.
// This means we hit this code path when loading an .rrd file that was saved from the viewer.
// In the future a row-id clash should probably either be considered an error (with a loud warning)
// or an ignored idempotent operation (with the assumption that if the RowId is the same, so is the data).
// In any case, we cannot log loudly here.
// We also get here because of `ClearCascade`, but that could be solved by adding a random increment
// in `on_clear_cascade` (see https://github.com/rerun-io/rerun/issues/4469).
re_log::trace!(
"Found duplicated RowId ({}) during insert. Incrementing it by random offset (retry {}/{})…",
row.row_id,
i + 1,
num_attempts
);
row.row_id = row.row_id.incremented_by(random_u64() % step_size + 1);
}
Err(err) => return Err(err),
}
}
Err(re_data_store::WriteError::ReusedRowId(row.row_id()))
}
// ----------------------------------------------------------------------------
/// An in-memory database built from a stream of [`LogMsg`]es.
///
/// NOTE: all mutation is to be done via public functions!
pub struct EntityDb {
/// Set by whomever created this [`EntityDb`].
///
/// Clones of an [`EntityDb`] gets a `None` source.
pub data_source: Option<re_smart_channel::SmartChannelSource>,
/// Comes in a special message, [`LogMsg::SetStoreInfo`].
set_store_info: Option<SetStoreInfo>,
/// Keeps track of the last time data was inserted into this store (viewer wall-clock).
last_modified_at: web_time::Instant,
/// The highest `RowId` in the store,
/// which corresponds to the last edit time.
/// Ignores deletions.
latest_row_id: Option<RowId>,
/// In many places we just store the hashes, so we need a way to translate back.
entity_path_from_hash: IntMap<EntityPathHash, EntityPath>,
/// The global-scope time tracker.
///
/// For each timeline, keeps track of what times exist, recursively across all
/// entities/components.
///
/// Used for time control.
times_per_timeline: TimesPerTimeline,
/// A tree-view (split on path components) of the entities.
tree: crate::EntityTree,
/// Stores all components for all entities for all timelines.
data_store: DataStore,
/// The active promise resolver for this DB.
resolver: re_query::PromiseResolver,
/// Query caches for the data in [`Self::data_store`].
query_caches: re_query::Caches,
stats: IngestionStatistics,
}
impl EntityDb {
pub fn new(store_id: StoreId) -> Self {
let data_store =
re_data_store::DataStore::new(store_id.clone(), DataStoreConfig::default());
let query_caches = re_query::Caches::new(&data_store);
Self {
data_source: None,
set_store_info: None,
last_modified_at: web_time::Instant::now(),
latest_row_id: None,
entity_path_from_hash: Default::default(),
times_per_timeline: Default::default(),
tree: crate::EntityTree::root(),
data_store,
resolver: re_query::PromiseResolver::default(),
query_caches,
stats: IngestionStatistics::new(store_id),
}
}
/// Helper function to create a recording from a [`StoreInfo`] and some [`DataRow`]s.
///
/// This is useful to programmatically create recordings from within the viewer, which cannot
/// use the `re_sdk`, which is not Wasm-compatible.
pub fn from_info_and_rows(
store_info: StoreInfo,
rows: impl IntoIterator<Item = DataRow>,
) -> Result<Self, Error> {
let mut entity_db = EntityDb::new(store_info.store_id.clone());
entity_db.set_store_info(SetStoreInfo {
row_id: RowId::new(),
info: store_info,
});
for row in rows {
entity_db.add_data_row(row)?;
}
Ok(entity_db)
}
#[inline]
pub fn tree(&self) -> &crate::EntityTree {
&self.tree
}
#[inline]
pub fn data_store(&self) -> &DataStore {
&self.data_store
}
pub fn store_info_msg(&self) -> Option<&SetStoreInfo> {
self.set_store_info.as_ref()
}
pub fn store_info(&self) -> Option<&StoreInfo> {
self.store_info_msg().map(|msg| &msg.info)
}
pub fn app_id(&self) -> Option<&ApplicationId> {
self.store_info().map(|ri| &ri.application_id)
}
#[inline]
pub fn query_caches(&self) -> &re_query::Caches {
&self.query_caches
}
#[inline]
pub fn resolver(&self) -> &re_query::PromiseResolver {
&self.resolver
}
/// Returns `Ok(None)` if any of the required components are missing.
#[inline]
pub fn latest_at_archetype<A: re_types_core::Archetype>(
&self,
entity_path: &EntityPath,
query: &re_data_store::LatestAtQuery,
) -> PromiseResult<Option<((re_log_types::TimeInt, RowId), A)>>
where
re_query::LatestAtResults: re_query::ToArchetype<A>,
{
let results = self.query_caches().latest_at(
self.store(),
query,
entity_path,
A::all_components().iter().copied(), // no generics!
);
use re_query::ToArchetype as _;
match results.to_archetype(self.resolver()).flatten() {
PromiseResult::Pending => PromiseResult::Pending,
PromiseResult::Error(err) => {
// Primary component has never been logged.
if let Some(err) = err.downcast_ref::<re_query::QueryError>() {
if matches!(err, re_query::QueryError::PrimaryNotFound(_)) {
return PromiseResult::Ready(None);
}
}
// Primary component has been cleared.
if let Some(err) = err.downcast_ref::<re_types_core::DeserializationError>() {
if matches!(err, re_types_core::DeserializationError::MissingData { .. }) {
return PromiseResult::Ready(None);
}
}
PromiseResult::Error(err)
}
PromiseResult::Ready(arch) => {
PromiseResult::Ready(Some((results.compound_index, arch)))
}
}
}
/// Get the latest index and value for a given dense [`re_types_core::Component`].
///
/// This assumes that the row we get from the store contains at most one instance for this
/// component; it will log a warning otherwise.
///
/// This should only be used for "mono-components" such as `Transform` and `Tensor`.
///
/// This is a best-effort helper, it will merely log errors on failure.
#[inline]
pub fn latest_at_component<C: re_types_core::Component>(
&self,
entity_path: &EntityPath,
query: &re_data_store::LatestAtQuery,
) -> Option<re_query::LatestAtMonoResult<C>> {
self.query_caches().latest_at_component::<C>(
self.store(),
self.resolver(),
entity_path,
query,
)
}
/// Get the latest index and value for a given dense [`re_types_core::Component`].
///
/// This assumes that the row we get from the store contains at most one instance for this
/// component; it will log a warning otherwise.
///
/// This should only be used for "mono-components" such as `Transform` and `Tensor`.
///
/// This is a best-effort helper, and will quietly swallow any errors.
#[inline]
pub fn latest_at_component_quiet<C: re_types_core::Component>(
&self,
entity_path: &EntityPath,
query: &re_data_store::LatestAtQuery,
) -> Option<re_query::LatestAtMonoResult<C>> {
self.query_caches().latest_at_component_quiet::<C>(
self.store(),
self.resolver(),
entity_path,
query,
)
}
#[inline]
pub fn latest_at_component_at_closest_ancestor<C: re_types_core::Component>(
&self,
entity_path: &EntityPath,
query: &re_data_store::LatestAtQuery,
) -> Option<(EntityPath, re_query::LatestAtMonoResult<C>)> {
self.query_caches()
.latest_at_component_at_closest_ancestor::<C>(
self.store(),
self.resolver(),
entity_path,
query,
)
}
#[inline]
pub fn store(&self) -> &DataStore {
&self.data_store
}
#[inline]
pub fn store_kind(&self) -> StoreKind {
self.store_id().kind
}
#[inline]
pub fn store_id(&self) -> &StoreId {
self.data_store.id()
}
/// If this entity db is the result of a clone, which store was it cloned from?
///
/// A cloned store always gets a new unique ID.
///
/// We currently only use entity db cloning for blueprints:
/// when we activate a _default_ blueprint that was received on the wire (e.g. from a recording),
/// we clone it and make the clone the _active_ blueprint.
/// This means all active blueprints are clones.
#[inline]
pub fn cloned_from(&self) -> Option<&StoreId> {
self.store_info().and_then(|info| info.cloned_from.as_ref())
}
pub fn timelines(&self) -> impl ExactSizeIterator<Item = &Timeline> {
self.times_per_timeline().keys()
}
pub fn times_per_timeline(&self) -> &TimesPerTimeline {
&self.times_per_timeline
}
/// Histogram of all events on the timeeline, of all entities.
pub fn time_histogram(&self, timeline: &Timeline) -> Option<&crate::TimeHistogram> {
self.tree().subtree.time_histogram.get(timeline)
}
/// Total number of static messages for any entity.
pub fn num_static_messages(&self) -> u64 {
self.tree.num_static_messages_recursive()
}
/// Returns whether a component is static.
pub fn is_component_static(&self, component_path: &ComponentPath) -> Option<bool> {
if let Some(entity_tree) = self.tree().subtree(component_path.entity_path()) {
entity_tree
.entity
.components
.get(&component_path.component_name)
.map(|component_histogram| component_histogram.is_static())
} else {
None
}
}
pub fn num_rows(&self) -> usize {
self.data_store.num_static_rows() as usize + self.data_store.num_temporal_rows() as usize
}
/// Return the current `StoreGeneration`. This can be used to determine whether the
/// database has been modified since the last time it was queried.
#[inline]
pub fn generation(&self) -> re_data_store::StoreGeneration {
self.data_store.generation()
}
#[inline]
pub fn last_modified_at(&self) -> web_time::Instant {
self.last_modified_at
}
/// The highest `RowId` in the store,
/// which corresponds to the last edit time.
/// Ignores deletions.
#[inline]
pub fn latest_row_id(&self) -> Option<RowId> {
self.latest_row_id
}
#[inline]
pub fn is_empty(&self) -> bool {
self.set_store_info.is_none() && self.num_rows() == 0
}
/// A sorted list of all the entity paths in this database.
pub fn entity_paths(&self) -> Vec<&EntityPath> {
use itertools::Itertools as _;
self.entity_path_from_hash.values().sorted().collect()
}
#[inline]
pub fn ingestion_stats(&self) -> &IngestionStatistics {
&self.stats
}
#[inline]
pub fn entity_path_from_hash(&self, entity_path_hash: &EntityPathHash) -> Option<&EntityPath> {
self.entity_path_from_hash.get(entity_path_hash)
}
/// Returns `true` also for entities higher up in the hierarchy.
#[inline]
pub fn is_known_entity(&self, entity_path: &EntityPath) -> bool {
self.tree.subtree(entity_path).is_some()
}
/// If you log `world/points`, then that is a logged entity, but `world` is not,
/// unless you log something to `world` too.
#[inline]
pub fn is_logged_entity(&self, entity_path: &EntityPath) -> bool {
self.entity_path_from_hash.contains_key(&entity_path.hash())
}
pub fn add(&mut self, msg: &LogMsg) -> Result<(), Error> {
re_tracing::profile_function!();
debug_assert_eq!(msg.store_id(), self.store_id());
match &msg {
LogMsg::SetStoreInfo(msg) => self.set_store_info(msg.clone()),
LogMsg::ArrowMsg(_, arrow_msg) => {
let table = DataTable::from_arrow_msg(arrow_msg)?;
self.add_data_table(table)?;
}
LogMsg::BlueprintActivationCommand(_) => {
// Not for us to handle
}
}
Ok(())
}
pub fn add_data_table(&mut self, mut table: DataTable) -> Result<(), Error> {
// TODO(#1760): Compute the size of the datacells in the batching threads on the clients.
table.compute_all_size_bytes();
for row in table.to_rows() {
self.add_data_row(row?)?;
}
self.last_modified_at = web_time::Instant::now();
Ok(())
}
/// Inserts a [`DataRow`] into the database.
///
/// Updates the [`crate::EntityTree`] and applies [`ClearCascade`]s as needed.
pub fn add_data_row(&mut self, row: DataRow) -> Result<(), Error> {
re_tracing::profile_function!(format!("num_cells={}", row.num_cells()));
self.register_entity_path(&row.entity_path);
if self
.latest_row_id
.map_or(true, |latest| latest < row.row_id)
{
self.latest_row_id = Some(row.row_id);
}
// ## RowId duplication
//
// We shouldn't be attempting to retry in this instance: a duplicated RowId at this stage
// is likely a user error.
//
// We only do so because, the way our 'save' feature is currently implemented in the
// viewer can result in a single row's worth of data to be split across several insertions
// when loading that data back (because we dump per-bucket, and RowIds get duplicated
// across buckets).
//
// TODO(#1894): Remove this once the save/load process becomes RowId-driven.
let store_event = insert_row_with_retries(
&mut self.data_store,
row,
MAX_INSERT_ROW_ATTEMPTS,
DEFAULT_INSERT_ROW_STEP_SIZE,
)?;
// First-pass: update our internal views by notifying them of resulting [`StoreEvent`]s.
//
// This might result in a [`ClearCascade`] if the events trigger one or more immediate
// and/or pending clears.
let original_store_events = &[store_event];
self.times_per_timeline.on_events(original_store_events);
self.query_caches.on_events(original_store_events);
let clear_cascade = self.tree.on_store_additions(original_store_events);
// Second-pass: update the [`DataStore`] by applying the [`ClearCascade`].
//
// This will in turn generate new [`StoreEvent`]s that our internal views need to be
// notified of, again!
let new_store_events = self.on_clear_cascade(clear_cascade);
self.times_per_timeline.on_events(&new_store_events);
self.query_caches.on_events(&new_store_events);
let clear_cascade = self.tree.on_store_additions(&new_store_events);
// Clears don't affect `Clear` components themselves, therefore we cannot have recursive
// cascades, thus this whole process must stabilize after one iteration.
if !clear_cascade.is_empty() {
re_log::debug!(
"recursive clear cascade detected -- might just have been logged this way"
);
}
// We inform the stats last, since it measures e2e latency.
self.stats.on_events(original_store_events);
Ok(())
}
fn on_clear_cascade(&mut self, clear_cascade: ClearCascade) -> Vec<StoreEvent> {
let mut store_events = Vec::new();
// Create the empty cells to be inserted.
//
// Reminder: these are the [`RowId`]s of the `Clear` components that triggered the
// cascade, they are not unique and may be shared across many entity paths.
let mut to_be_inserted =
BTreeMap::<RowId, BTreeMap<EntityPath, (TimePoint, Vec<DataCell>)>>::default();
for (row_id, per_entity) in clear_cascade.to_be_cleared {
for (entity_path, (timepoint, component_paths)) in per_entity {
let per_entity = to_be_inserted.entry(row_id).or_default();
let (cur_timepoint, cells) = per_entity.entry(entity_path).or_default();
*cur_timepoint = timepoint.union_max(cur_timepoint);
for component_path in component_paths {
if let Some(data_type) = self
.data_store
.lookup_datatype(&component_path.component_name)
{
cells.push(DataCell::from_arrow_empty(
component_path.component_name,
data_type.clone(),
));
}
}
}
}
for (row_id, per_entity) in to_be_inserted {
let mut row_id = row_id;
for (entity_path, (timepoint, cells)) in per_entity {
// NOTE: It is important we insert all those empty components using a single row (id)!
// 1. It'll be much more efficient when querying that data back.
// 2. Otherwise we will end up with a flaky row ordering, as we have no way to tie-break
// these rows! This flaky ordering will in turn leak through the public
// API (e.g. range queries)!
match DataRow::from_cells(row_id, timepoint.clone(), entity_path, cells) {
Ok(row) => {
let res = insert_row_with_retries(
&mut self.data_store,
row,
MAX_INSERT_ROW_ATTEMPTS,
DEFAULT_INSERT_ROW_STEP_SIZE,
);
match res {
Ok(store_event) => {
row_id = store_event.row_id.next();
store_events.push(store_event);
}
Err(err) => {
re_log::error_once!(
"Failed to propagate EntityTree cascade: {err}"
);
}
}
}
Err(err) => {
re_log::error_once!("Failed to propagate EntityTree cascade: {err}");
}
}
}
}
store_events
}
fn register_entity_path(&mut self, entity_path: &EntityPath) {
self.entity_path_from_hash
.entry(entity_path.hash())
.or_insert_with(|| entity_path.clone());
}
pub fn set_store_info(&mut self, store_info: SetStoreInfo) {
self.set_store_info = Some(store_info);
}
pub fn gc_everything_but_the_latest_row(&mut self) {
re_tracing::profile_function!();
self.gc(&GarbageCollectionOptions {
target: re_data_store::GarbageCollectionTarget::Everything,
protect_latest: 1, // TODO(jleibs): Bump this after we have an undo buffer
purge_empty_tables: true,
dont_protect: [
re_types_core::components::ClearIsRecursive::name(),
re_types_core::archetypes::Clear::indicator().name(),
]
.into_iter()
.collect(),
enable_batching: false,
time_budget: DEFAULT_GC_TIME_BUDGET,
});
}
/// Free up some RAM by forgetting the older parts of all timelines.
pub fn purge_fraction_of_ram(&mut self, fraction_to_purge: f32) {
re_tracing::profile_function!();
assert!((0.0..=1.0).contains(&fraction_to_purge));
self.gc(&GarbageCollectionOptions {
target: re_data_store::GarbageCollectionTarget::DropAtLeastFraction(
fraction_to_purge as _,
),
protect_latest: 1,
purge_empty_tables: false,
dont_protect: Default::default(),
enable_batching: false,
time_budget: DEFAULT_GC_TIME_BUDGET,
});
}
pub fn gc(&mut self, gc_options: &GarbageCollectionOptions) {
re_tracing::profile_function!();
let (store_events, stats_diff) = self.data_store.gc(gc_options);
re_log::trace!(
num_row_ids_dropped = store_events.len(),
size_bytes_dropped = re_format::format_bytes(stats_diff.total.num_bytes as _),
"purged datastore"
);
self.on_store_deletions(&store_events);
}
fn on_store_deletions(&mut self, store_events: &[StoreEvent]) {
re_tracing::profile_function!();
let Self {
data_source: _,
set_store_info: _,
last_modified_at: _,
latest_row_id: _,
entity_path_from_hash: _,
times_per_timeline,
tree,
data_store: _,
resolver: _,
query_caches,
stats: _,
} = self;
times_per_timeline.on_events(store_events);
query_caches.on_events(store_events);
let store_events = store_events.iter().collect_vec();
let compacted = CompactedStoreEvents::new(&store_events);
tree.on_store_deletions(&store_events, &compacted);
}
/// Key used for sorting recordings in the UI.
pub fn sort_key(&self) -> impl Ord + '_ {
self.store_info()
.map(|info| (info.application_id.0.as_str(), info.started))
}
/// Export the contents of the current database to a sequence of messages.
///
/// If `time_selection` is specified, then only data for that specific timeline over that
/// specific time range will be accounted for.
pub fn to_messages(
&self,
time_selection: Option<(Timeline, ResolvedTimeRangeF)>,
) -> DataTableResult<Vec<LogMsg>> {
re_tracing::profile_function!();
self.store().sort_indices_if_needed();
let set_store_info_msg = self
.store_info_msg()
.map(|msg| Ok(LogMsg::SetStoreInfo(msg.clone())));
let time_filter = time_selection.map(|(timeline, range)| {
(
timeline,
ResolvedTimeRange::new(range.min.floor(), range.max.ceil()),
)
});
let data_messages = self.store().to_data_tables(time_filter).map(|table| {
table
.to_arrow_msg()
.map(|msg| LogMsg::ArrowMsg(self.store_id().clone(), msg))
});
// If this is a blueprint, make sure to include the `BlueprintActivationCommand` message.
// We generally use `to_messages` to export a blueprint via "save". In that
// case, we want to make the blueprint active and default when it's reloaded.
// TODO(jleibs): Coupling this with the stored file instead of injecting seems
// architecturally weird. Would be great if we didn't need this in `.rbl` files
// at all.
let blueprint_ready = if self.store_kind() == StoreKind::Blueprint {
let activate_cmd =
re_log_types::BlueprintActivationCommand::make_active(self.store_id().clone());
itertools::Either::Left(std::iter::once(Ok(activate_cmd.into())))
} else {
itertools::Either::Right(std::iter::empty())
};
let messages: Result<Vec<_>, _> = set_store_info_msg
.into_iter()
.chain(data_messages)
.chain(blueprint_ready)
.collect();
messages
}
/// Make a clone of this [`EntityDb`], assigning it a new [`StoreId`].
pub fn clone_with_new_id(&self, new_id: StoreId) -> Result<EntityDb, Error> {
re_tracing::profile_function!();
self.store().sort_indices_if_needed();
let mut new_db = EntityDb::new(new_id.clone());
new_db.last_modified_at = self.last_modified_at;
new_db.latest_row_id = self.latest_row_id;
// We do NOT clone the `data_source`, because the reason we clone an entity db
// is so that we can modify it, and then it would be wrong to say its from the same source.
// Specifically: if we load a blueprint from an `.rdd`, then modify it heavily and save it,
// it would be wrong to claim that this was the blueprint from that `.rrd`,
// and it would confuse the user.
// TODO(emilk): maybe we should use a special `Cloned` data source,
// wrapping either the original source, the original StoreId, or both.
if let Some(store_info) = self.store_info() {
let mut new_info = store_info.clone();
new_info.store_id = new_id;
new_info.cloned_from = Some(self.store_id().clone());
new_db.set_store_info(SetStoreInfo {
row_id: RowId::new(),
info: new_info,
});
}
for row in self.store().to_rows()? {
new_db.add_data_row(row)?;
}
Ok(new_db)
}
}
impl re_types_core::SizeBytes for EntityDb {
fn heap_size_bytes(&self) -> u64 {
// TODO(emilk): size of entire EntityDb, including secondary indices etc
self.data_store.heap_size_bytes()
}
}
// ----------------------------------------------------------------------------
pub struct IngestionStatistics {
store_id: StoreId,
e2e_latency_sec_history: Mutex<emath::History<f32>>,
}
impl StoreSubscriber for IngestionStatistics {
fn name(&self) -> String {
"rerun.testing.store_subscribers.IngestionStatistics".into()
}
fn as_any(&self) -> &dyn std::any::Any {
self
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
fn on_events(&mut self, events: &[StoreEvent]) {
for event in events {
if event.store_id == self.store_id {
self.on_new_row_id(event.row_id);
}
}
}
}
impl IngestionStatistics {
pub fn new(store_id: StoreId) -> Self {
let min_samples = 0; // 0: we stop displaying e2e latency if input stops
let max_samples = 1024; // don't waste too much memory on this - we just need enough to get a good average
let max_age = 1.0; // don't keep too long of a rolling average, or the stats get outdated.
Self {
store_id,
e2e_latency_sec_history: Mutex::new(emath::History::new(
min_samples..max_samples,
max_age,
)),
}
}
fn on_new_row_id(&mut self, row_id: RowId) {
if let Ok(duration_since_epoch) = web_time::SystemTime::UNIX_EPOCH.elapsed() {
let nanos_since_epoch = duration_since_epoch.as_nanos() as u64;
// This only makes sense if the clocks are very good, i.e. if the recording was on the same machine!
if let Some(nanos_since_log) =
nanos_since_epoch.checked_sub(row_id.nanoseconds_since_epoch())
{
let now = nanos_since_epoch as f64 / 1e9;
let sec_since_log = nanos_since_log as f32 / 1e9;
self.e2e_latency_sec_history.lock().add(now, sec_since_log);
}
}
}
/// What is the mean latency between the time data was logged in the SDK and the time it was ingested?
///
/// This is based on the clocks of the viewer and the SDK being in sync,
/// so if the recording was done on another machine, this is likely very inaccurate.
pub fn current_e2e_latency_sec(&self) -> Option<f32> {
let mut e2e_latency_sec_history = self.e2e_latency_sec_history.lock();
if let Ok(duration_since_epoch) = web_time::SystemTime::UNIX_EPOCH.elapsed() {
let nanos_since_epoch = duration_since_epoch.as_nanos() as u64;
let now = nanos_since_epoch as f64 / 1e9;
e2e_latency_sec_history.flush(now); // make sure the average is up-to-date.
}
e2e_latency_sec_history.average()
}
}