1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//! Hertel-Mehlhorn algorithm for convex partitioning.
//! Based on <https://github.com/ivanfratric/polypartition>, contributed by embotech AG.

use crate::math::{Point, Real};
use crate::utils::point_in_triangle::{corner_direction, Orientation};

/// Checks if the counter-clockwise polygon `poly` has an edge going counter-clockwise from `p1` to `p2`.
/// Returns the edge point's indices in the second polygon. Returns `None` if none were found.
fn find_edge_index_in_polygon(p1: u32, p2: u32, indices: &[u32]) -> Option<(usize, usize)> {
    for i1 in 0..indices.len() {
        let i2 = (i1 + 1) % indices.len();
        if p1 == indices[i1] && p2 == indices[i2] {
            return Some((i1, i2));
        }
    }
    None
}

/// The Hertel-Mehlhorn algorithm.
///
/// Takes a set of triangles and returns a vector of convex polygons.
///
/// Time/Space complexity: O(n^2)/O(n) Where `n` is the number of points in the input polygon.
///
/// Quality of solution: This algorithm is a heuristic. At most four times the minimum number of convex
/// polygons is created. However, in practice it works much better than that and often returns the optimal
/// partitioning.
///
/// This algorithm is described in <https://people.mpi-inf.mpg.de/~mehlhorn/ftp/FastTriangulation.pdf>.
pub fn hertel_mehlhorn(vertices: &[Point<Real>], indices: &[[u32; 3]]) -> Vec<Vec<Point<Real>>> {
    hertel_mehlhorn_idx(vertices, indices)
        .into_iter()
        .map(|poly_indices| {
            poly_indices
                .into_iter()
                .map(|idx| vertices[idx as usize])
                .collect()
        })
        .collect()
}

/// Internal implementation of the Hertel-Mehlhorn algorithm that returns the polygon indices.
pub fn hertel_mehlhorn_idx(vertices: &[Point<Real>], indices: &[[u32; 3]]) -> Vec<Vec<u32>> {
    let mut indices: Vec<Vec<u32>> = indices.iter().map(|indices| indices.to_vec()).collect();
    // Iterate over all polygons.
    let mut i_poly1 = 0;
    while i_poly1 < indices.len() {
        // Iterate over their points.
        let mut i11 = 0;
        while i11 < indices[i_poly1].len() {
            let polygon1 = &indices[i_poly1];

            // Get the next point index.
            let i12 = (i11 + 1) % polygon1.len();

            // Get the current edge.
            let edge_start = polygon1[i11];
            let edge_end = polygon1[i12];

            // Iterate over the remaining polygons and find an edge to the current polygon.
            let (i_poly2, edge_indices) = match indices
                .iter()
                .enumerate()
                .skip(i_poly1 + 1)
                .find_map(|(i, poly_indices)| {
                    // Check if the edge is in the second polygon. Start and end are switched because
                    // the edge direction is flipped in the second polygon.
                    find_edge_index_in_polygon(edge_end, edge_start, poly_indices)
                        .map(|edge_indices| (i, edge_indices))
                }) {
                Some(found) => found,
                None => {
                    // Go to the next point if there was no common edge.
                    i11 += 1;
                    continue;
                }
            };

            // Check if the connections between the polygons are convex:
            let (i21, i22) = edge_indices;
            let polygon2 = &indices[i_poly2];

            // First connection:
            let i13 = (polygon1.len() + i11 - 1) % polygon1.len();
            let i23 = (i22 + 1) % polygon2.len();
            let p1 = &vertices[polygon2[i23] as usize];
            let p2 = &vertices[polygon1[i13] as usize];
            let p3 = &vertices[polygon1[i11] as usize];
            // Go to the next point if this section isn't convex.
            if corner_direction(p1, p2, p3) == Orientation::Cw {
                i11 += 1;
                continue;
            }
            // Second connection:
            let i13 = (i12 + 1) % polygon1.len();
            let i23 = (polygon2.len() + i21 - 1) % polygon2.len();
            let p1 = &vertices[polygon1[i13] as usize];
            let p2 = &vertices[polygon2[i23] as usize];
            let p3 = &vertices[polygon1[i12] as usize];
            // Go to the next point if this section isn't convex.
            if corner_direction(p1, p2, p3) == Orientation::Cw {
                i11 += 1;
                continue;
            }

            // Connection is convex, merge the polygons.
            let mut new_polygon = Vec::with_capacity(polygon1.len() + polygon2.len() - 2);
            new_polygon.extend(polygon1.iter().cycle().skip(i12).take(polygon1.len() - 1));
            new_polygon.extend(polygon2.iter().cycle().skip(i22).take(polygon2.len() - 1));

            // Remove the polygon from the list.
            let _ = indices.remove(i_poly2);
            // Overwrite the first polygon with the new one.
            indices[i_poly1] = new_polygon;
            // Start from the first point.
            i11 = 0;
        }

        // Go to the next polygon.
        i_poly1 += 1;
    }

    indices
}

// --- Unit tests ----------------------------------------------------------------------------
#[cfg(test)]
mod tests {
    use super::hertel_mehlhorn_idx;
    use crate::math::Point;

    #[test]
    fn origin_outside_shape() {
        // Expected result of convex decomposition:
        // 4-----------------------3
        // |  .       (2)       .  |
        // |    .             .    |
        // |       7-------0       |
        // |  (1)  |       |  (3)  |
        // |       |   °   |       |
        // 5-------6       1-------2
        let vertices = vec![
            Point::new(2.0, 2.0),   // 0
            Point::new(2.0, -2.0),  // 1
            Point::new(4.0, -2.0),  // 2
            Point::new(4.0, 4.0),   // 3
            Point::new(-4.0, 4.0),  // 4
            Point::new(-4.0, -2.0), // 5
            Point::new(-2.0, -2.0), // 6
            Point::new(-2.0, 2.0),  // 7
        ];

        let triangles = [
            [5, 6, 7],
            [4, 5, 7],
            [3, 4, 7],
            [3, 7, 0],
            [2, 3, 0],
            [2, 0, 1],
        ];

        let indices = hertel_mehlhorn_idx(&vertices, &triangles);

        let expected_indices = vec![
            // (1)
            vec![5, 6, 7, 4],
            // (2)
            vec![3, 4, 7, 0],
            // (3)
            vec![2, 3, 0, 1],
        ];

        assert_eq!(indices, expected_indices);
    }
}