1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
//! Hertel-Mehlhorn algorithm for convex partitioning.
//! Based on <https://github.com/ivanfratric/polypartition>, contributed by embotech AG.
use crate::math::{Point, Real};
use crate::utils::point_in_triangle::{corner_direction, Orientation};
/// Checks if the counter-clockwise polygon `poly` has an edge going counter-clockwise from `p1` to `p2`.
/// Returns the edge point's indices in the second polygon. Returns `None` if none were found.
fn find_edge_index_in_polygon(p1: u32, p2: u32, indices: &[u32]) -> Option<(usize, usize)> {
for i1 in 0..indices.len() {
let i2 = (i1 + 1) % indices.len();
if p1 == indices[i1] && p2 == indices[i2] {
return Some((i1, i2));
}
}
None
}
/// The Hertel-Mehlhorn algorithm.
///
/// Takes a set of triangles and returns a vector of convex polygons.
///
/// Time/Space complexity: O(n^2)/O(n) Where `n` is the number of points in the input polygon.
///
/// Quality of solution: This algorithm is a heuristic. At most four times the minimum number of convex
/// polygons is created. However, in practice it works much better than that and often returns the optimal
/// partitioning.
///
/// This algorithm is described in <https://people.mpi-inf.mpg.de/~mehlhorn/ftp/FastTriangulation.pdf>.
pub fn hertel_mehlhorn(vertices: &[Point<Real>], indices: &[[u32; 3]]) -> Vec<Vec<Point<Real>>> {
hertel_mehlhorn_idx(vertices, indices)
.into_iter()
.map(|poly_indices| {
poly_indices
.into_iter()
.map(|idx| vertices[idx as usize])
.collect()
})
.collect()
}
/// Internal implementation of the Hertel-Mehlhorn algorithm that returns the polygon indices.
pub fn hertel_mehlhorn_idx(vertices: &[Point<Real>], indices: &[[u32; 3]]) -> Vec<Vec<u32>> {
let mut indices: Vec<Vec<u32>> = indices.iter().map(|indices| indices.to_vec()).collect();
// Iterate over all polygons.
let mut i_poly1 = 0;
while i_poly1 < indices.len() {
// Iterate over their points.
let mut i11 = 0;
while i11 < indices[i_poly1].len() {
let polygon1 = &indices[i_poly1];
// Get the next point index.
let i12 = (i11 + 1) % polygon1.len();
// Get the current edge.
let edge_start = polygon1[i11];
let edge_end = polygon1[i12];
// Iterate over the remaining polygons and find an edge to the current polygon.
let (i_poly2, edge_indices) = match indices
.iter()
.enumerate()
.skip(i_poly1 + 1)
.find_map(|(i, poly_indices)| {
// Check if the edge is in the second polygon. Start and end are switched because
// the edge direction is flipped in the second polygon.
find_edge_index_in_polygon(edge_end, edge_start, poly_indices)
.map(|edge_indices| (i, edge_indices))
}) {
Some(found) => found,
None => {
// Go to the next point if there was no common edge.
i11 += 1;
continue;
}
};
// Check if the connections between the polygons are convex:
let (i21, i22) = edge_indices;
let polygon2 = &indices[i_poly2];
// First connection:
let i13 = (polygon1.len() + i11 - 1) % polygon1.len();
let i23 = (i22 + 1) % polygon2.len();
let p1 = &vertices[polygon2[i23] as usize];
let p2 = &vertices[polygon1[i13] as usize];
let p3 = &vertices[polygon1[i11] as usize];
// Go to the next point if this section isn't convex.
if corner_direction(p1, p2, p3) == Orientation::Cw {
i11 += 1;
continue;
}
// Second connection:
let i13 = (i12 + 1) % polygon1.len();
let i23 = (polygon2.len() + i21 - 1) % polygon2.len();
let p1 = &vertices[polygon1[i13] as usize];
let p2 = &vertices[polygon2[i23] as usize];
let p3 = &vertices[polygon1[i12] as usize];
// Go to the next point if this section isn't convex.
if corner_direction(p1, p2, p3) == Orientation::Cw {
i11 += 1;
continue;
}
// Connection is convex, merge the polygons.
let mut new_polygon = Vec::with_capacity(polygon1.len() + polygon2.len() - 2);
new_polygon.extend(polygon1.iter().cycle().skip(i12).take(polygon1.len() - 1));
new_polygon.extend(polygon2.iter().cycle().skip(i22).take(polygon2.len() - 1));
// Remove the polygon from the list.
let _ = indices.remove(i_poly2);
// Overwrite the first polygon with the new one.
indices[i_poly1] = new_polygon;
// Start from the first point.
i11 = 0;
}
// Go to the next polygon.
i_poly1 += 1;
}
indices
}
// --- Unit tests ----------------------------------------------------------------------------
#[cfg(test)]
mod tests {
use super::hertel_mehlhorn_idx;
use crate::math::Point;
#[test]
fn origin_outside_shape() {
// Expected result of convex decomposition:
// 4-----------------------3
// | . (2) . |
// | . . |
// | 7-------0 |
// | (1) | | (3) |
// | | ° | |
// 5-------6 1-------2
let vertices = vec![
Point::new(2.0, 2.0), // 0
Point::new(2.0, -2.0), // 1
Point::new(4.0, -2.0), // 2
Point::new(4.0, 4.0), // 3
Point::new(-4.0, 4.0), // 4
Point::new(-4.0, -2.0), // 5
Point::new(-2.0, -2.0), // 6
Point::new(-2.0, 2.0), // 7
];
let triangles = [
[5, 6, 7],
[4, 5, 7],
[3, 4, 7],
[3, 7, 0],
[2, 3, 0],
[2, 0, 1],
];
let indices = hertel_mehlhorn_idx(&vertices, &triangles);
let expected_indices = vec![
// (1)
vec![5, 6, 7, 4],
// (2)
vec![3, 4, 7, 0],
// (3)
vec![2, 3, 0, 1],
];
assert_eq!(indices, expected_indices);
}
}